NURBS surfaces
CAD Surfaces
Computer Aided Design

NURBS surfaces

- Basic surfaces
 - Bilinear patch
 - Ruled surfaces
 - Extruded surfaces
 - Coons patch
- Advanced surface algorithms
 - Generalized revolution surfaces
 - Profiled surfaces
- Geometric modelling and B-REP topology
- Open questions
Computer Aided Design
NURBS surfaces

Basic surfaces
Bilinear patches

Through 4 points, we want to build a surface supported by the 4 straight lines joining the points.

\[P_{00}, P_{01}, P_{11}, P_{10} \]

The surface has the following expression:

\[S(u, v) = P_{00}(1-u)(1-v) + P_{01}(1-u)v + P_{10}u(1-v) + P_{11}uv \]

Hence the transformation into a B-spline:

\[
\begin{align*}
N_0^1(u) &= 1-u \\
N_1^1(u) &= u \\
N_0^1(v) &= 1-v \\
N_1^1(v) &= v
\end{align*}
\]

\[U = \{0, 0, 1, 1\} \]

\[V = \{0, 0, 1, 1\} \]
Bilinear square

- Bézier surface of degree 1 in each direction

\[
S^w(u, v) = \sum_{i=0}^{1} \sum_{j=0}^{1} N_i^1(u) N_j^1(v) P_{ij}^w
\]

\[
U = \{0, 0, 1, 1\}
\]

\[
V = \{0, 0, 1, 1\}
\]

- The weights \(w_i\) are equal to 1.

- The surface is polynomial (non-rational)
Extruded surfaces

Let C be a NURBS curve of degree p, of nodal sequence U, possibly closed, with $n+1$ control points:

$C^w(u) = \sum_{i=0}^{n} N_i^p(u) P_i^w$ \hspace{1cm} $C(u) = \sum_{i=0}^{n} R_i^p(u) P_i$

$U = \{u_0,\ldots,u_r\}$ \hspace{1cm} (r+1 nodes with $r = n + p + 1$)

We want to extrude this curve along a unit vector W, for a length d.

What is the expression of the resulting surface as a NURBS?
Extruded surfaces

In 3D:

\[S(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} R_{ij}^{p,q}(u, v) P_{ij} = \sum_{i=0}^{n} R_i^p(u)(P_i + vdW) \]

Using homog. coord.

\[S^w(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} N_i^p(u) N_j^q(v) P_{ij}^w = \sum_{i=0}^{n} N_i^p(u)(P_i^w + vdW_i^w) \]

\[P_{i0}^w = P_i \]
\[P_{i1}^w = P_i^w + dW_i^w \]

\[S^w(u, v) = \sum_{i=0}^{n} N_i^p(u) \sum_{j=0}^{1} N_j^1(v) P_{ij}^w \]

\[V = \{0, 0, 1, 1\} \]
Computer Aided Design
NURBS surfaces

- Extruded surfaces

\[S^w(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{1} N_i^p(u) N_j^1(v) P_{ij}^w \]

\[U = \{u_0, \cdots, u_r\} \quad P_{i0}^w = P_i^w \]
\[V = \{0, 0, 1, 1\} \quad P_{i1}^w = P_i^w + dW_i^w \]

\[W_i^w = \begin{pmatrix} W & w_i \\ 0 & 1 \end{pmatrix} \]

\[S(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{1} R_{ij}^{p,1}(u, v) P_{ij} \]

\[P_{i0} = P_i \quad w_{i0} = w_i \]
\[P_{i1} = P_i + dW \quad w_{i1} = w_i \]
Ruled surfaces

- We have two curves

\[C_0^w(u) = \sum_{i=0}^{n_0} N_i^{P_0}(u) P_{i0} \]
\[C_1^w(u) = \sum_{i=0}^{n_1} N_i^{P_1}(u) P_{il} \]
\[C_0(u) = \sum_{i=0}^{n_0} R_i^{P_0}(u) P_{i0} \]
\[C_1(u) = \sum_{i=0}^{n_1} R_i^{P_1}(u) P_{il} \]

- We want a ruled surface in the direction \(v \), i.e a linear interpolation between \(C_0(u) \) and \(C_1(u) \).
Ruled surfaces

There are conditions on the curves $C_0(u)$ and $C_1(u)$.

- Same parametrization (compatible nodal sequences)

\[
\begin{aligned}
U_0 &= U_1 = U \\
p_0 &= p_1 = p
\end{aligned}
\]

\[
n_0 = n_1 = n \implies C_0^w(u) = \sum_{i=0}^{n} N_i^p(u) P_i^0 \\
C_1^w(u) = \sum_{i=0}^{n} N_i^p(u) P_i^1
\]

- The surface is then expressed simply

\[
S^w(u,v) = (1-v)C_0^w(u) + v C_1^w(u)
\]

\[
S^w(u,v) = \sum_{j=0}^{1} N_j^1(v) C_j^w(u)
\]

thus,

\[
S^w(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{1} N_i^p(u) N_j^1(v) P_{ij}^w
\]
What to do if conditions on the curves $C_0(u)$ and $C_1(u)$ are not met?

1. Make sure that the parametric interval matches
 - Affine transformation of one of the parameters (see chapter 3)
2. Degree elevation towards the highest degree $= \max(p_0, p_1)$
 - Transformation into a set of Bézier curves by node saturation (chap. 4)
 - Degree elevation for each Bézier curves with Forrest’s relations (chap. 3)
 - Deletion of multiple nodes (chap. 4)
3. Node insertion (chap. 4)
 - Nodes of $C_0(u)$ not found in $C_1(u)$ are introduced in $C_1(u)$ and reciprocally

These operations do not alter the geometry of the support curves

- Excepted the parametrization if point (1) is not satisfied
Some examples of ruled surfaces

\[U = \{0, 0, 0, 0, 1, 2, 3, 3, 3, 3\} \quad p = 3 \]

\[V = \{0, 0, 1, 1\} \quad q = 1 \]
Cylinders

\[U = \{-3, -2, -1, 0, \ldots, 13, 14, 15\} \quad p = 3 \]

\[U = \{0, 0, 0, 1, 1, 2, 2, 3, 3, 3\} \quad p = 2 \]

\[V = \{0, 0, 1, 1\} \quad q = 1 \]
Computer Aided Design

NURBS surfaces

- Cones
Computer Aided Design

NURBS surfaces

- Hyperboloids
Coons patches

Can we represent a Coons patch exactly with a NURBS surface?

- 4 boundary curves
- Compatible; i.e. NURBS:
 - of same nodal sequence and same degree two by two
 - nodal sequences yield curves with parameters contained between 0 and 1 (for more simplicity)
 - whose extremities are matching two by two

- Curves C^u of nodal sequence U, degree p, n control points P^u_{ij} for C_j^u

- Curves C^v of nodal sequence V, degree q, m control points P^v_{ij} for C_j^v
Coons patch = assembly of ruled surfaces

\[S_1(u, v) = (1-v)C_0^u(u) + vC_1^u(u) \]
\[S_2(u, v) = (1-u)C_0^v(v) + uC_1^v(v) \]
\[S_3(u, v) = (1-u)(1-v)A + u(1-v)B + v(1-u)D + uvC \]

If the boundary curves are compatible NURBS curves, we can represent \(S_1, S_2 \) and \(S_3 \) as NURBS surfaces...

Is the sum \(S(u, v) = S_1(u, v) + S_2(u, v) - S_3(u, v) \) a NURBS as well?
The surfaces S_1 et S_2 are ruled surfaces:

\[S_1(u, v) = (1 - v) C_0^u(u) + v C_1^u(u), \quad S_2(u, v) = (1 - u) C_0^v(v) + u C_1^v(v) \]

\[S_1(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{1} N_i^p(u) N_j^q(v) P_{ij}^1 \]

\[S_2(u, v) = \sum_{i=0}^{1} \sum_{j=0}^{m} N_i^1(u) N_j^q(v) P_{ij}^2 \]

\[U_1 = U, \quad U_2 = \{0, 0, 1, 1\} \]

\[V_1 = \{0, 0, 1, 1\}, \quad V_2 = V \]

\[P_{ij}^1 = P_{ij}^u, \quad P_{ij}^2 = P_{ji}^v \]
The surface S_3 is a bilinear patch

$$S_3(u, v) = \sum_{i=0}^{1} \sum_{j=0}^{1} N_i^1(u) N_j^1(v) P_{ij}^3$$

$U = \{0, 0, 1, 1\}$ \hspace{1cm} $P_{00}^3 = A$

$V = \{0, 0, 1, 1\}$ \hspace{1cm} $P_{10}^3 = B$

$P_{01}^3 = D$

$P_{11}^3 = C$
The « sum » between several NURBS is possible (it is a linear combination; cf. partition of unity & affine invariance)

\[S(u, v) = S_1(u, v) + S_2(u, v) - S_3(u, v) \]

- No conformity of the surfaces (different # of CP)
- Different shape functions (because nodal sequences are different)
The « sum » between several NURBS is possible (it is a linear combination; cf. partition of unity & affine invariance) – if they are similar.

\[S(u, v) = S_1(u, v) + S_2(u, v) - S_3(u, v) \]

\[V^* = V \]
\[U^* = U \]
\[V_1 = \{0, 0, 1, 1\} \]
\[U_1 = U \]
\[V_2 = V \]
\[U_2 = \{0, 0, 1, 1\} \]
\[V_3 = \{0, 0, 1, 1\} \]
\[U_3 = \{0, 0, 1, 1\} \]

\[p^* = p \]
\[q^* = q \]
\[p_1 = p \]
\[q_1 = 1 \]
\[p_2 = 1 \]
\[q_2 = q \]
\[p_3 = 1 \]
\[q_3 = 1 \]

- Nodal sequences must correspond.
The « sum » between several NURBS is possible (it is a linear combination; cf. partition of unity & affine invariance) – if they are similar.

\[
\begin{align*}
U^* &= U \\
V^* &= V \\
p^* &= p \\
q^* &= q \\
\end{align*}
\]

\[
\begin{align*}
U_1 &= U \\
V_1 &= \{0, 0, 1, 1\} \\
p_1 &= p \\
q_1 &= 1 \\
\end{align*}
\]

\[
\begin{align*}
U_2 &= \{0, 0, 1, 1\} \\
V_2 &= V \\
p_2 &= 1 \\
q_2 &= q \\
\end{align*}
\]

\[
\begin{align*}
U_3 &= \{0, 0, 1, 1\} \\
V_3 &= \{0, 0, 1, 1\} \\
p_3 &= 1 \\
q_3 &= 1 \\
\end{align*}
\]

- degree elevation
 \(\rightarrow q_1 = q \)
- Then, node insertions
 \(\rightarrow V_1 = V \)
- degree elevation
 \(\rightarrow p_2 = p \)
- degree elevation
 \(\rightarrow p_3 = p, q_3 = q \)
- degree elevation
 \(\rightarrow U_2 = U \)
- degree elevation
 \(\rightarrow U_3 = U, V_3 = V \)
Each operation (degree elevation or node insertion) adds control points so as to make “compatible” surfaces.

Finally, one can write:

\[S(u, v) = S_1(u, v) + S_2(u, v) - S_3(u, v) \]

\[P_{ij}^* = P_{ij}^{1*} + P_{ij}^{2*} - P_{ij}^{3*} \]

\[
\begin{align*}
U^* &= U \\
V^* &= V \\
p^* &= p \\
q^* &= q
\end{align*}
\]

\[
\begin{align*}
U_1^* &= U \\
V_1^* &= V \\
p_1^* &= p \\
q_1^* &= q
\end{align*}
\]

\[
\begin{align*}
U_2^* &= U \\
V_2^* &= V \\
p_2^* &= p \\
q_2^* &= q
\end{align*}
\]

\[
\begin{align*}
U_3^* &= U \\
V_3^* &= V \\
p_3^* &= p \\
q_3^* &= q
\end{align*}
\]
Degree elevation (in \(u \) or \(v \)) of a surface whose nodal sequence is that of a Bézier curve:

- Identical to the degree elevation ease of a Bézier curve
- Forrest relations written on the set of control points

\[
\begin{align*}
Q_{0j} & = P_{0j} \\
Q_{ij} & = P_{i-1,j} + \frac{(p+1-i)}{(p+1)} (P_{ij} - P_{i-1,j}) \\
Q_{p+1,j} & = P_{pj}
\end{align*}
\]

- The nodal sequence is then augmented
- Node insertions in a B-Spline surface
 - see chapter 5
Computer Aided Design

NURBS surfaces
Global modification of curves / surfaces

- Affine transformation of control points
- The affine invariance assures us that the resulting curve is what we want.
 - Ex. Ellipse from a circle – scaling in a single direction.
Computer Aided Design

NURBS surfaces

(some) advanced algorithms
Profiled surfaces

a) Generalization of the surface of revolution

- Each point of a generating curve (the profile curve) follows a trajectory whose radius is defined by a second curve (the trajectory curve).

- We assume without loss of generality that $P(u)$ is in the (xz) plane, and that $T(v)$ is in the (xy) plane. The axis of revolution is along Oz.

$$P(u) = \begin{pmatrix} x^p(u) \\ 0 \\ z^p(u) \end{pmatrix} \quad T(v) = \begin{pmatrix} x^t(v) \\ y^t(v) \\ 0 \end{pmatrix}$$
Generalization of surfaces of revolution

Let's transform T to polar coordinates: it corresponds to a simple rotation around z + a uniform scaling in x-y (not z):

$$T(v) = \begin{pmatrix} x^t(v) \\ y^t(v) \\ 0 \end{pmatrix} = \begin{pmatrix} r(v) \cos \theta(v) \\ r(v) \sin \theta(v) \\ 0 \end{pmatrix}$$

The related transformation matrix is therefore:

$$M(v) = S(v) \cdot R(v) = \begin{pmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} r \cos \theta & -r \sin \theta & 0 \\ r \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Let's apply this to P:

$$P(u) = \begin{pmatrix} x^p(u) \\ 0 \\ z^p(u) \end{pmatrix} \rightarrow S(u, v) = M(v) \cdot P(u) = \begin{pmatrix} x^p(u) \cdot r(v) \cos \theta(v) \\ x^p(u) \cdot r(v) \sin \theta(v) \\ z^p(u) \end{pmatrix} = \begin{pmatrix} x^p(u) \cdot x^t(v) \\ x^p(u) \cdot y^t(v) \\ z^p(u) \end{pmatrix}$$
Generalization of surfaces of revolution

- The analytical expression of the surface is therefore simply:

$$S(u, v) = \begin{pmatrix}
 x^p(u) \cdot x^t(v) \\
 x^p(u) \cdot y^t(v) \\
 z^p(u)
\end{pmatrix}$$

- Can we express it as a NURBS?

$$P(u) = \begin{pmatrix}
 x^p(u) \\
 0 \\
 z^p(u)
\end{pmatrix}$$

$$T(v) = \begin{pmatrix}
 x^t(v) \\
 y^t(v) \\
 0
\end{pmatrix}$$
Generalization of surfaces of revolution

- New control points are located with reference to the z axis
- We have to deal with homogeneous coordinates

\[
S^w(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} N_i^p(u) N_j^q(v) P_{ij}^w
\]

\[
C^w(u) = \sum_{i=0}^{n} N_i^p(u) C_i^w
\]

\[
U = \{u_0, \cdots, u_r\}
\]

\[
T^w(v) = \sum_{i=0}^{m} N_i^q(v) T_i^w
\]

\[
V = \{v_0, \cdots, v_s\}
\]
Computer Aided Design

NURBS surfaces

\[S(u, v) = \begin{pmatrix} x^p(u) \cdot x^t(v) \\ x^p(u) \cdot y^t(v) \\ z^p(u) \end{pmatrix} \equiv \begin{pmatrix} x^p(u) x^t(v) w^p(u) w^t(v) \\ x^p(u) y^t(v) w^p(u) w^t(v) \\ z^p(u) w^p(u) w^t(v) \\ w^p(u) w^t(v) \end{pmatrix} \]

\[C^w(u) = \sum_{i=0}^n N^p_i(u) C^w_i = \begin{pmatrix} x^p(u) w^p(u) \\ 0 \\ z^p(u) w^p(u) \\ w^p(u) \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^n N^p_i(u) x^p_i w^p_i \\ 0 \\ \sum_{i=0}^n N^p_i(u) z^p_i w^p_i \\ \sum_{i=0}^n N^p_i(u) w^p_i \end{pmatrix} \]

\[T^w(v) = \sum_{j=0}^m N^q_j(v) T^w_j = \begin{pmatrix} x^t(v) w^t(v) \\ y^t(v) w^t(v) \\ 0 \\ w^t(v) \end{pmatrix} = \begin{pmatrix} \sum_{j=0}^m N^q_j(v) x^t_j w^t_j \\ \sum_{j=0}^m N^q_j(v) y^t_j w^t_j \\ 0 \\ \sum_{j=0}^m N^q_j(v) w^t_j \end{pmatrix} \]

\[S^w(u, v) = \sum_{i=0}^n \sum_{j=0}^m N^p_i(u) N^q_j(v) \begin{pmatrix} x^p_i x^t_j w^p_i w^t_j \\ x^p_i y^t_j w^p_i w^t_j \\ x^p_i z^p_i w^p_i w^t_j \\ z^p_i w^p_i w^t_j \end{pmatrix} \]

\[(n+1). (m+1) \text{ control points} \]

\[\text{Determination of the CPs} \]

\[x^p(u) x^t(v) w^p(u) w^t(v) \]
\[= \sum_{i=0}^n N^p_i(u) x^p_i w^p_i \cdot \sum_{j=0}^m N^q_j(v) x^t_j w^t_j \]
\[= \sum_{i=0}^n \sum_{j=0}^m N^p_i(u) N^q_j(v) x^p_i w^p_i x^t_j w^t_j \]

Same for the other coordinates:
Initial data

\[C^w(u) = \sum_{i=0}^{n} N_i^p(u) C_i^w \]
\[U = \{u_0, \ldots, u_r\} \quad C_i^w = \begin{pmatrix}
x_i^p w_i^p \\
0 \\
z_i^p w_i^p \\
w_i^p
\end{pmatrix} \]
\[T^w(v) = \sum_{i=0}^{m} N_i^q(v) T_i^w \]
\[V = \{v_0, \ldots, v_s\} \quad T_j^w = \begin{pmatrix}
x_j^t w_j^t \\
y_j^t w_j^t \\
0 \\
w_j^t
\end{pmatrix} \]

The surface is expressed:

\[S^w(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} N_i^p(u) N_j^q(v) P_{ij}^w \]
\[U = \{u_0, \ldots, u_r\} \quad V = \{v_0, \ldots, v_s\} \]

\[P_{ij}^w = \begin{pmatrix}
x_i^p x_j^t w_i^p w_j^t \\
x_i^p y_j^t w_i^p w_j^t \\
z_i^p w_i^p w_j^t \\
w_i^p w_j^t
\end{pmatrix} \]
Computer Aided Design

NURBS surfaces
Surface of revolution

Let us have a curve (generating curve) that we want to revolve around an axis W, by a certain angle α.

$$C^w(u) = \sum_{i=0}^{n} N_i^p(u) P_i^w$$

$U = \{u_0, \ldots, u_r\}$

$$S^w(u, v) = \sum_{j=0}^{m} N_j^2(v) Q_j^w(u)$$

$m=2$ if $\alpha \leq 2\pi/3$ (1 segment, 3 CP)

$V = \{0, 0, 0, 1, 1, 1\}$

$m=4$ if $2\pi/3 < \alpha \leq 4\pi/3$ (2 segments, 5 CP)

$V = \{0, 0, 0, 1, 1, 2, 2, 2\}$

$m=6$ if $4\pi/3 < \alpha \leq 2\pi$ (3 segments, 7 CP)

$V = \{0, 0, 0, 1, 1, 2, 2, 3, 3, 3\}$
Circular arc of angle $\alpha \leq 2\pi/3$ (actually, $<\pi$)

\[P_0^w = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{pmatrix} \]

\[P_1^w = \begin{pmatrix} x_1 \cos \alpha/2 \\ y_1 \cos \alpha/2 \\ z_1 \cos \alpha/2 \\ \cos \alpha/2 \end{pmatrix} \]

\[P_2^w = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{pmatrix} \]
Without loss of generality, let's assume that:
- $\alpha=2\pi$
- A rotation axis coincident with the axis z
- Curve C lies in the plane xz : $Q^w_0(u) = C^w(u)$

Computation of the points $Q^w_j(u)$

\[
Q^w_0(u) = \begin{pmatrix}
x(u) \cdot w(u) \\
0 \cdot w(u) \\
z(u) \cdot w(u) \\
w(u)
\end{pmatrix}
\]

\[
Q^w_1(u) = \begin{pmatrix}
2x \cos \pi / 3 \cdot w \cdot 1/2 \\
2x \sin \pi / 3 \cdot w \cdot 1/2 \\
z \cdot w \cdot 1/2 \\
w \cdot 1/2
\end{pmatrix}
\]

\[
Q^w_2(u) = \begin{pmatrix}
x \cos 2\pi / 3 \cdot w \\
x \sin 2\pi / 3 \cdot w \\
z \cdot w \\
w
\end{pmatrix}
\]

etc...
Definition as a NURBS

\[S^w(u, v) = \sum_{j=0}^{m} N_j^2(v) Q_j^w(u) = \sum_{j=0}^{m} N_j^2(v) \sum_{i=0}^{n} N_i^p(u) P_{ij}^w \]

- Rotation + scaling of the curve

The operation is possible because NURBS curves are invariant by affine transformations

\[S^w(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} N_i^p(u) N_j^2(v) P_{ij}^w \]
Example - revolution of 90° of a curve around the axis z:

$$
P_0^w = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad P_1^w = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \quad P_2^w = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad P_3^w = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}
$$

Calculation of circle's parameters

Rotation / scaling of CP

$$w = \cos \frac{\alpha}{2} = \frac{\sqrt{2}}{2}$$

$$S^w(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{2} N_i^3(u) N_j^2(v) P_{ij}^w$$

$$U = \{0, 0, 0, 0, 1, 1, 1, 1\}$$

$$V = \{0, 0, 0, 1, 1, 1\}$$
Example - revolution of 90° of a curve around the axis z:

\[
P^w_{00} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad P^w_{10} = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \quad P^w_{20} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \quad P^w_{30} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix},
\]

\[
P^w_{02} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad P^w_{12} = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \quad P^w_{22} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad P^w_{32} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix},
\]

\[
P^w_{01} = \begin{pmatrix} w \\ 0 \\ w \\ w \end{pmatrix}, \quad P^w_{11} = \begin{pmatrix} 2w \\ 2w \\ w \\ w \end{pmatrix}, \quad P^w_{21} = \begin{pmatrix} w \\ w \\ w \\ w \end{pmatrix}, \quad P^w_{31} = \begin{pmatrix} 2w \\ w \\ w \\ w \end{pmatrix},
\]

\[
S^w(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{2} N^3_i(u) N^2_j(v) P^w_{ij}
\]

\[
w = \cos \frac{\alpha}{2} = \frac{\sqrt{2}}{2}
\]

\[
U = \{0, 0, 0, 0, 1, 1, 1, 1\}, \quad V = \{0, 0, 0, 1, 1, 1\}
\]
Computer Aided Design

NURBS surfaces
An egg …

- Number of control points?
- Degree of the curve
- Position of CP
- Weight of CP
A computer-aided design (CAD) approach is used to model a NURBS surface. The surface is defined by a set of control points and a mathematical equation that describes the shape. The equation given is:

\[w = \cos \left(\frac{\pi}{8} \right) = \sqrt{\frac{2 + \sqrt{2}}{2}} \]

\[w = \sqrt{\frac{2 + \sqrt{2}}{2}} \]

\[w = 1 \]

\[w = \cos \left(\frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \]

The surface is described as an egg-like shape, which is achieved by controlling points and revolving around the z-axis. The example shows a shaded section of the surface with specific control points marked.
Computer Aided Design

NURBS surfaces

\[w = \frac{\sqrt{2} \sqrt{2 + \sqrt{2}}}{4} \]

\[w = \frac{\sqrt{2 + \sqrt{2}}}{2} \]

\[w = \frac{\sqrt{2}}{2} \]

\[w = 1 \]

\[w = \frac{1}{2} \]
Profiled surfaces

b) profile with a controlled section obtained by sweeping

- same scheme:
 - curved trajectory
 - Section curve
 - with an orientation matrix: \(M(v) \)

- The “analytic” surface is
 \[
 S(u,v) = T(v) + M(v)C(u)
 \]

- Two possibilities
 1- \(M(v) \) is an identity (constant orientation)
 2- \(M(v) \) depends on the trajectory

In these two cases, \(M(v) \) does not correspond to a generalized rotation (no fixed axis of rotation)
Case 1: when $M(v)$ is an identity:

$S(u, v) = T(v) + C(u)$

The section is simply moved without changing the orientation.

$$
C^w(u) = \sum_{i=0}^{n} N_i^p(u) x_i^c w_i^c
\left[
\sum_{i=0}^{n} N_i^p(u) x_i^c w_i^c
\right]
$$

$$
T^w(v) = \sum_{i=0}^{m} N_i^q(v) x_i^t w_i^t
\left[
\sum_{i=0}^{m} N_i^q(v) x_i^t w_i^t
\right]
$$
Computer Aided Design

NURBS surfaces

\[
S(u,v) = T(v) + C(u)
\]

\[
C^w(u) = \sum_{i=0}^{n} N^p_i(u) C^w_i
\]

\[
S^w(u) = \sum_{i=0}^{n} N^p_i(u) S^w_i
\]

\[
T^w(v) = \sum_{j=0}^{m} N^q_j(v) T^w_j
\]

\[
x^p(u) + x^t(v) = \frac{\sum_{i=0}^{n} N^p_i(u) x^c_i w^c_i}{\sum_{i=0}^{n} N^p_i(u) w^c_i} + \frac{\sum_{j=0}^{m} N^q_j(v) x^t_j w^t_j}{\sum_{j=0}^{m} N^q_j(v) w^t_j}
\]

\[
= \frac{\sum_{i=0}^{n} N^p_i(u) x^c_i w^c_i \cdot \sum_{j=0}^{m} N^q_j(v) w^t_j + \sum_{i=0}^{n} N^p_i(u) x^c_i \cdot \sum_{j=0}^{m} N^q_j(v) x^t_j w^t_j}{\sum_{i=0}^{n} N^p_i(u) w^c_i \cdot \sum_{j=0}^{m} N^q_j(v) w^t_j}
\]

\[
= \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} N^p_i(u) N^q_j(v) x^c_i w^c_i w^t_j + \sum_{i=0}^{n} \sum_{j=0}^{m} N^p_i(u) N^q_j(v) x^t_j w^c_i w^t_j}{\sum_{i=0}^{n} \sum_{j=0}^{m} N^p_i(u) N^q_j(v) w^c_i w^t_j}
\]

\[
= \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} N^p_i(u) N^q_j(v) (x^c_i + x^t_j) w^c_i w^t_j}{\sum_{i=0}^{n} \sum_{j=0}^{m} N^p_i(u) N^q_j(v) w^c_i w^t_j}
\]

\[n.m\] homogeneous coordinates of control points

Associated weight
Case 1: $M(v)$ is an identity: $S(u, v) = T(v) + C(u)$

$C^w(u) = \sum_{i=0}^{n} N_i^p(u) C_i^w$ \hspace{1cm} $U = \{u_0, \cdots, u_r\}$

$T^w(v) = \sum_{i=0}^{m} N_i^q(v) T_i^w$ \hspace{1cm} $V = \{v_0, \cdots, v_s\}$

$S^w(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} N_i^p(u) N_j^q(v) P_{ij}^w$

$C_i^w = \begin{pmatrix} x_i^c w_i^c \\ z_i^c w_i^c \\ w_i^c \end{pmatrix}$ \hspace{1cm} $T_j^w = \begin{pmatrix} x_j^t w_j^t \\ y_j^t w_j^t \\ z_j^t w_j^t \end{pmatrix}$ \hspace{1cm} $P_{ij}^w = \begin{pmatrix} (x_i^c + x_j^t) w_i^c w_j^t \\ (y_i^c + y_j^t) w_i^c w_j^t \\ (z_i^c + z_j^t) w_i^c w_j^t \end{pmatrix}$
Case 2: $M(v)$ is imposed: $S(u,v) = T(v) + M(v)C(u)$

Purpose: align the section along the trajectory curve

Determination of $M(v)$

- Global coordinates: \{O, X, Y, Z\}
- Local coordinates along $T(v)$:
 \[\{ o(v), x(v), y(v), z(v) \} \]
 \[o(v) = T(v) \]
 \[x(v) = \frac{T'(v)}{|T'(v)|} \] (tangent vector)

- Let $B(v)$ a vectorial function satisfying $B(v) \cdot x(v) = 0 \ \forall \ v$, that will be computed later. It will serve as a reference axis to set the orientation of the section curve along the trajectory:

 \[z(v) = \frac{B(v)}{|B(v)|} \]
 \[y(v) = z(v) \times x(v) \]
- \(M(v) \) is a matrix that allows to transform the coordinates from \(\{ o(v), x(v), y(v), z(v) \} \) to \(\{ O, X, Y, Z \} \) (trivial)

- This problem is that \(M(v) \) does not lead to a NURBS surface in the general case, because the dependence in \(v \) is arbitrary.

- The surface that we want to build is therefore an approximation.

\[
S(u, v) = T(v) + M(v)C(u)
\]

\[
\tilde{S}^w(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} N_i^p(u) N_j^q(v) P_{ij}^w
\]

- How to determine the \(P_{ij} \)?
Two techniques (among others)

1) With the algebraic form $S(u,v) = T(v) + M(v)C(u)$, generate a grid of $n \times m$ points exactly on $S(u,v)$. By interpolation, determine positions of CP of a surface passing by these points (not described here)

- Disadvantage: no isovalues of \hat{S} according to u or v is exactly on S

2) By interpolating many instances of the section (oriented appropriately by M) along the trajectory, using a technique known as « skinning » (described in the sequel)

- Allows to interpolate exactly the trajectory and the instances of the profile at nodes v_i – (but the surface remains an approximation everywhere else)
The technique described here:

- We place many instances of the section along the trajectory. These are oriented appropriately by \(M(v) \).
 \[C_k(u) \quad , \quad k = 0 \cdots K \]

- We then build a surface (skin) interpolating exactly these instances.

- The \(C_k(u) \) are therefore isoparametrics of the skin \(P(u,v) \) for constant values of \(v \), moreover, they are NURBS:
 \[C^w(u) = \sum_{i=0}^{n} N^p_i(u) C^w_{i,k} \]

Problems to solve:

- Computation of the position of points of interpolation along the trajectory curve (especially the vectorial function \(B(v) \))
- Computation of the final surface
The surface has the following form:

\[
\tilde{S}^w(u, v) = \sum_{i=0}^{n} \sum_{k=0}^{K} N_i^p(u) N_k^q(v) P_{i,k}^w
\]

- We have to determine:
 - the values of the parameter \(v \) for which curves \(C_k \) interpolate \(\tilde{S}^w(u, v) \).
 We shall call these values \(\bar{V} = [\bar{v}_0, \ldots, \bar{v}_K] \)
 - the nodal sequence \(V = [v_0, \ldots, v_s] \)
 - the control points \(P_{i,k}^w \)...
Computation of values \vec{v}_i for which we interpolate, and deduction of the nodal sequence V

- The number of nodes of V is $s+1$
- The number of interpolated positions is $K+1$ (min. given by the user)
- The degree of the trajectory is q (imposed)

We want, if possible, to keep the nodal sequence of the trajectory (same domain for v).

If $s = K + q + 1$ everything is OK.
If $s \leq K + q$ inserting nodes in the nodal sequence is needed
 $\rightarrow K + q - s + 1$ nodal insertions
If $s > K + q + 1$, add interpolated positions in such a way that $s = K + q + 1$
Case where we must make nodal insertions

- We aim at an approximately regular repartition
- The exact location of these insertions does not matter
- For instance, subdividing the longest nodal interval in two equal parts (and repeat this \(K + q - s + 1 \) times) is suitable.

\[
V = \{0, 0, 0, 1, 2, 4, 8, 10, 10, 10\}
\]

\[m = 3\]

\[
V' = \{0, 0, 0, 1, 2, 4, 6, 8, 10, 10, 10\}
\]

\[
V' = \{0, 0, 0, 1, 2, 3, 4, 6, 8, 10, 10, 10\}
\]

\[
V' = \{0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 10, 10\}
\]

- The position of the new control points of the trajectory \(T(v) \) is not needed, because its nodal sequence is not modified!!!
Computation of the values of the parameter \(v \) for the interpolation, \(\bar{V} = \{ \bar{v}_k \} \) , \(k = 0 , \cdots , K \)

- The repartition depends on the nodal sequence \(v_k \)
- For a node have a multiplicity of \(q \), the curve interpolates one of the CPs, therefore this value must be part of the \(\bar{v}_k \)

A sliding average on \(q \) nodes (where \(q \) is the degree) is a good solution:

\[
\bar{v}_k = \frac{1}{q} \sum_{i=1}^{q} v_{k+i} \quad , \quad k = 1 , \cdots , K - 1 \quad , \quad \bar{v}_0 = v_0 \quad \bar{v}_K = v_s .
\]

Example with \(q=2 \) : 9 control points and as many interpolation points

\[
V' = \{ 0 , 0 , 0 , 1 , 2 , 3 , 3 , 6 , 8 , 10 , 10 , 10 \}
\]

\[
\bar{V} = \{ 0 , \frac{1}{2} , \frac{3}{2} , \frac{5}{2} , 3 , \frac{9}{2} , 7 , 9 , 10 \}
\]
Two things remain to be done

1: computation of positions of the instances of the profile curve, i.e. computations of positions of CPs of each instance C_k

2: computation of the position of control points of curves passing through the control points of the instances
Computation of the instances of the section (profile)

\[S(u,v) = T(v) + M(v)C(u) \]
\[C^w(u) = \sum_{i=0}^{n} N_i^p(u) C^w_i \]
\[C^w_k(u) = \sum_{i=0}^{n} N_i^p(u) C^w_{i,k} \]
\[C^w_{i,k} = M^w(\bar{v}_k) \cdot C^w_i \]
\[C^w = \begin{pmatrix} x_i \ w_i \\ y_i \ w_i \\ z_i \ w_i \\ w_i \end{pmatrix} \]
\[C^w_{i,k} = \begin{pmatrix} x_{i,k} \ w_{i,k} \\ y_{i,k} \ w_{i,k} \\ z_{i,k} \ w_{i,k} \\ w_{i,k} \end{pmatrix} \]
\[M^w(\bar{v}_k) = \begin{pmatrix} x(\bar{v}_k) & y(\bar{v}_k) & z(\bar{v}_k) & o(\bar{v}_k) \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot w(\bar{v}_k) \]
\[\{ O, X, Y, Z \} \]
\[\{ o(\bar{v}_k), x(\bar{v}_k), y(\bar{v}_k), z(\bar{v}_k) \} \]
\[o(\bar{v}_k) = T(\bar{v}_k) \quad B(\bar{v}_k) \text{ given} \]
\[x(\bar{v}_k) = \frac{T'(\bar{v}_k)}{|T'(\bar{v}_k)|} \]
\[z(\bar{v}_k) = \frac{B(\bar{v}_k)}{|B(\bar{v}_k)|} \]
\[y(\bar{v}_k) = z(\bar{v}_k) \times x(\bar{v}_k) \]
Computation of $B(\bar{v}_k)$

- Purpose: Have a similar orientation as the Frenet frame...

Three problems if $B(\bar{v}_k)$ is related to Frenet frame:

1- $B(\bar{v}_k)$ is not defined at places where $T(v)$ is a straight line (locally) or at inflexion points

2- $B(\bar{v}_k)$ abruptly changes its orientation before and after an inflexion point

3- For three-dimensional trajectories, vectors obtained by the use of $B(\bar{v}_k)$ can turn arbitrarily fast around the curve

… by avoiding problems raised by the following definition (Frenet)

$$B(\bar{v}_k) = \frac{T''(\bar{v}_k) \times T'''(\bar{v}_k)}{|T'(\bar{v}_k) \times T'''(\bar{v}_k)|}$$
Computer Aided Design

NURBS surfaces

Computation of \(B(\vec{v}_k) \)
- We want a result like that:

\[
T_k = \frac{T'(\vec{v}_k)}{|T'(\vec{v}_k)|}
\]

\[
b_k = B_{k-1} - (B_{k-1} \cdot T_k) T_k
\]

\[
B_k = \frac{b_k}{|b_k|}
\]

Attention: avoid having \(T_k \parallel B_{k-1} \)

Therefore \(K \) must such that the curve “turns” less than 90° between \(\vec{v}_{k-1} \) and \(\vec{v}_k \)

Method of the normal projection*
- We are going to compute explicitly the values of \(B(\vec{v}) \) for each parameter
- Let \(\bar{v}_k \) the increasing sequence of the parameter \(\nu \). We compute by the following way:

\[
T_k = \frac{T'(\bar{v}_k)}{|T'(\bar{v}_k)|}
\]

\[
b_k = B_{k-1} - (B_{k-1} \cdot T_k) T_k
\]

\[
B_k = \frac{b_k}{|b_k|}
\]

Case of periodic curves

- In general, $B_K \neq B_0$
- We can do the computation in two opposite directions:
 $$\hat{B}_0 \rightarrow \hat{B}_K$$
 $$\overline{B}_K \rightarrow \overline{B}_0$$

- Then we set
 $$B_k = \frac{\overline{B}_k + \hat{B}_k}{2}, \quad k = 1, \ldots, K-1$$
Global interpolation on a curve

- We have interpolation points \(C_{i,k}^w \)
- We have a nodal sequence: \(V' = \{ v_i' \}, \quad i = 0, \ldots, s' \)
- We have the values of \(v \) for the interpolation: \(\bar{V} = \{ \bar{v}_j \}, \quad j = 0, \ldots, K \)

Now, we need to compute the expression of curves passing through the CP of the instances of the profile:

\[
T_i^w (v) = \sum_{k=0}^{K} N_k^P (v) P_{i,k}^w \quad \text{such that} \quad T_i^w (\bar{v}_k) = C_{i,k}^w \quad \forall \ k = 0, \ldots, K
\]

- The control points of these curves are the control points of the surface that is sought. Why?
 - because the expression of the surface is separable in \(u \) and \(v \). See how we were able to compute the control points of an isoparametric on a B-Spline surface – see e.g. slide 36 of chapter 5
We obtain a linear system

\[
T^w_i(v) = \sum_{k=0}^{K} N^p_k(v) P_{i,k}^w \text{ such that } T^w_i(\bar{v}_k) = C^w_{i,k} \quad \forall k = 0, \ldots, K
\]

- The matrix \(A\) only depends on the nodal sequence \(V' = \{v'_i\}\) and the values \(\bar{V} = \{\bar{v}_j\}\).

- For each series of CP, this system is to be solved 4 times (once for each coordinate \(x, y, z\) and \(w\)) \(4(n+1)\) times in total.
 - Best choice: LU decomposition (once) + back substitution \(4(n+1)\) times with each different right hand side)
Final surface

\[\tilde{S}^w(u, v) = \sum_{i=0}^{n} \sum_{k=0}^{K} N_i^p(u) N_k^q(v) P_{i,k}^w \quad V' = \{v'_i\}, \quad i = 0, \ldots, s' \]
Extrusion of the red curve along the green one
Skinning

Consists in generation of a « skin » supported by a series of curves \(C_k(u) \), \(k = 0 \cdots K \)

- The curves \(C_k \) are interpolated
- The \(C_k(u) \) so are isoparametrics of the skin \(P(u,v) \) and are NURBS curves:

\[
C_k^w(u) = \sum_{i=0}^{n} N_i^p(u) C_{i,k}^w \quad U = \{u_0, \ldots, u_r\}
\]

- We assume they are compatible (same nodal sequence, same degree, same number of CPs)
- If it is not the case, use algorithms seen before to make them compatible (nodal insertion and degree elevation)
Skinning

The technique seen for building the profiled surface may be used

However, the trajectory curve is not known

- We need to build a nodal sequence \(V \), choose an order \(q \) and the values \(\bar{V} = \{ \bar{v}_j \} \) for which we interpolate the curves \(C_k \).
- The number of curves \(C_k \) is imposed: it is \(K+1 \).
 \[
 V = \{ v_i \}, \quad i = 0, \ldots, s
 \]
 \[
 \bar{V} = \{ \bar{v}_j \}, \quad j = 0, \ldots, K
 \]
- The explicit expression of the trajectory curve is, in fact, not needed!
Skinning

- Determination of the degree q
 - Arbitrary (user choice) but must be below $K+1$
- Determination of the values $\bar{V} = \{\bar{v}_j\}$
 - $K+1$ (nb of curves to interpolate) is fixed.
 - It is done by computing an approximation of the average arc length (averaged over the n control points of the curves to interpolate):

\[
\bar{v}_0 = 0; \quad \bar{v}_K = 1; \\
\bar{v}_k = \bar{v}_{k-1} + \sum_{i=0}^{n} \frac{\left| C_{i,k}^w - C_{i,k-1}^w \right|}{d_i}, \quad k = 1 \cdots K - 1 \\
d_i = \sum_{k=1}^{K} \left| C_{i,k}^w - C_{i,k-1}^w \right|
\]
Skinning

Determination of the nodal sequence

The same technique of sliding average previously used...

\[\bar{v}_k = \frac{1}{q} \sum_{i=1}^{q} v_{k+i} \quad k=1, \ldots, K-1 \quad \bar{v}_0 = v_0 \quad \bar{v}_K = v_s \]

but it is “reversed” to get \(v_k \) in terms of \(\bar{v}_k \)

\[v_{k+q} = \frac{1}{q} \sum_{i=k}^{k+q-1} \bar{v}_i \quad k=1, \ldots, K-q \quad v_0 = \cdots = v_q = \bar{v}_0 \quad v_{K+1} = \cdots = v_{K+q+1} = \bar{v}_K \]

There can't be multiple nodes except at boundaries ...

\[\bar{v}_k = \frac{1}{q} \sum_{i=1}^{q} v_{k+i} \quad k=1, \ldots, K-1 \quad \bar{v}_0 = v_0 \quad \bar{v}_K = v_s \]
Computer Aided Design

NURBS surfaces

- Skinning
 - We now have a nodal sequence, values of \(\nu \) for which the curves \(C_k \) are interpolated, and their control points.
 - The remaining (determination of the coordinates of the CPs of the surface) is identical to the previous case of an extrusion along a defined curve.
Least squares

Suppose we have a huge number of 3D samples (from laser sampler), for an object. We want to reconstruct a shape, for which the description shall be both light and accurate. However, there are sampling errors, let's suppose those errors follow a normal distribution.
1D case (curves)

Suppose we have \(N \) samples:

\[
e_k = \begin{pmatrix} x_k \\ y_k \\ z_k \end{pmatrix}, \quad k = 0 \ldots N - 1, \text{ with a standard deviation } \sigma_k
\]

One wants to approximate these with a curve that has \(n \) parameters, with \(n \ll N \):

\[
C(u) = \sum_{i=0}^{n-1} P_i \cdot \varphi_i(u)
\]
The discrepancy $\|C(u_k) - e_k\|$ between the curve and the samples is weighted by the inverse of the normal deviation

- If the latter is small, then the curve shall be closer to the sample

We get:

$$\text{err}_k = \left(\frac{1}{\sigma_k} \left\| C(u_k) - e_k \right\| \right)^2 = \left(\frac{1}{\sigma_k} \left\| \sum_{i=0}^{n-1} P_i \cdot \varphi_i(u_k) - e_k \right\| \right)^2$$

We do not have the u_k's yet. Those must be computed, for instance considering that the samples are equidistant in the parametric space, or this way:

$$u_k - u_{k-1} = \| e_k - e_{k-1} \|, \quad k = 1 \ldots N - 1 \quad \text{and} \quad u_0 = 0.$$

- Anyway; this sequence should be built before minimizing the error so that the problem remains linear.
One wishes to minimize the total error over all samples:

\[
\chi^2 = \sum_{k=0}^{N-1} \frac{1}{\sigma_k^2} \left(\sum_{i=0}^{n-1} P_i \cdot \varphi_i(u_k) - e_k \right)^2
\]

with respect to the control points \(P_i = \begin{pmatrix} px_i \\ py_i \\ pz_i \end{pmatrix}, \ i = 0 \cdots n-1 \)

One can express the total error along each axis:

\[
\chi^2 = \sum_{k=0}^{N-1} \frac{1}{\sigma_k^2} \left(\sum_{i=0}^{n-1} px_i \cdot \varphi_i(u_k) - x_k \right)^2 + \text{terms in } y \text{ and } z
\]
One can put it in a matrix form:

\[
\chi^2 = (J P_x - E_x)^T W (J P_x - E_x) + (J P_y - E_y)^T W (J P_y - E_y) + (J P_z - E_z)^T W (J P_z - E_z)
\]

with

\[
J = \begin{pmatrix}
\varphi_0(u_0) & \cdots & \varphi_{n-1}(u_0) \\
\vdots & \ddots & \vdots \\
\varphi_0(u_{N-1}) & \cdots & \varphi_{n-1}(u_{N-1})
\end{pmatrix}
\]

\[
W = \begin{pmatrix}
1/\sigma_0^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1/\sigma_{N-1}^2
\end{pmatrix}
\]

\[
P_x = \begin{pmatrix}
p x_0 \\
\vdots \\
p x_{n-1}
\end{pmatrix}
\]

\[
E_x = \begin{pmatrix}
x_0 \\
\vdots \\
x_{N-1}
\end{pmatrix}
\]
Now one wants to minimize the error

thus the differential of the error with respect to each P_i should vanish

\[
\frac{\partial \chi^2}{\partial xP_i} = \frac{\partial (JP_x - E_x)^T W (JP_x - E_x)}{\partial xP_i}
\]

\[
= \frac{\partial (JP_x - E_x)^T}{\partial xP_i} W (JP_x - E_x) + (JP_x - E_x)^T W \frac{\partial (JP_x - E_x)}{\partial xP_i}
\]

\[
= \frac{\partial P_x^T}{\partial xP_i} J^T W (JP_x - E_x) + (JP_x - E_x)^T W J \frac{\partial P_x}{\partial xP_i}
\]

\[
(0, \cdots, 1, \cdots, 0)
\]

\[
= 2 \left[J^T W JP_x - J^T W E_x \right]_{i^{th} \ line} = 0
\]
Overall, this should be written for each variable, thus:

\[
\nabla_P \chi^2 = \begin{pmatrix}
2 J^T W J P_x - 2 J^T W E_x \\
2 J^T W J P_y - 2 J^T W E_y \\
2 J^T W J P_z - 2 J^T W E_z
\end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\]

\[
\begin{align*}
P_x &= (J^T W J)^{-1} J^T W E_x \\
P_y &= (J^T W J)^{-1} J^T W E_y \\
P_z &= (J^T W J)^{-1} J^T W E_z
\end{align*}
\]

This system can be solved by an LU decomposition of \(J^T W J \).
Sampling of a trunk, slice as a periodic B-Spline
NURBS = open modelling system

The following geometries cannot be represented exactly using NURBS:

- Profiles extruded along any trajectory (except straight lines and circles)
- Curve at a given distance of another curve
- Intersection of two NURBS surfaces
- Projection of a NURBS curve on a surface
- Many other cases … however, by increasing the number of control points and/or the degree, convergence toward the exact geometry is usually very fast.