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Computer Graphics

Course outline

 Introduction 
 Images and display techniques

 Bases
 Gamma correction
 Aliasing and techniques to remedy
 Storage 
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Computer Graphics

Course outline

 3D Perspective & 2D / 3D transformations
 Go from a 3D space to a 2D display device

 Two paradigms for image synthesis
 Representation of curves and surfaces

 Splines & co.
 Meshes 

 Realistic rendering by ray tracing
 Concepts and theoretical bases
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Aliasing

« Aliasing » (crénelage in French)
 Appears during image synthesis or capture, during 

spatial discretization (transformation of a “continuous”  
image to discrete pixels)
 Small experiment : The test image is a series of black and white 

lines, with an increasing density.

1 line/4 pixels 1/2
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Aliasing

1/1 3/2
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Aliasing

2/1 199/100
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Aliasing

16/5

 In fact, one should not have any 
spatial frequency that is higher 
than a given cutoff frequency, 
that depends on the sampling 
density.
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Aliasing

 Nyquist-Shannon theorem
 If the spectrum of a function  doesn't contain frequencies higher than 

e.g. B, then it is completely determined by a series of samples (in 
time, space …) separated by 1 / (2B) , or of frequency equal to 2B . 
2B is the Nyquist frequency.

 Otherwise, there is aliasing:

Signal
 reconstruction

Original 
signal

2f
nyquist

2f
nyquist

Fourrier transform (amplitude)

f̂ (ω)= ∫
−∞

+∞

f (t)eiω t dt
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Aliasing

 Moiré patterns
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Aliasing

How to limit aliasing ?
 By increasing the sampling density to respect Nyquist-

Shannon's theorem ?
 By filtering the signal with a low pass filter to be in the 

window of Shannon's theorem for a given sampling 
density ?

 A combination of both... ?
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Aliasing

 Increase the sampling density (or rate)
 Equivalent to increase the image resolution
 But : real life images are often fractal

 High frequency details are such that spatial resolution is huge 
 But : artificially generated images include sudden changes in 

intensity (e.g. black lines on white background)
 Cf Fourier decomposition of a square signal : 

Spectrum of a square signal : odd harmonics of amplitude 1/n ...

This solution alone is not working well.
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Aliasing

 Analog lowpass filter
 For capturing devices, this must be done before the actual capture
 Makes slightly blurred image - but not too much!
 This is exactly what we find on the sensor of digital cameras : An AA 

filter positioned between the lens, and the sensor.
 Many technologies are available.
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Aliasing

 Example: analog filter (physical) in a digital camera

Without
antialiasing
filter
  

With AA filter
in front of  the 
sensor
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Aliasing

 Numerical low-pass filtering
 When one creates artificial images, no analog AA is possible
 The usual way is to use oversampling (sampling with a higher rate), 

followed by a arithmetic mean to return to the actual (desired) 
sampling rate

 It is also possible to introduce variability in the sampling positions 
(e.g. add a random contribution to the positions of sample in a pixel)

49x49 resolution
with 4x4 oversampling

 

 49x49 resolution 
W/O antialiasing

196x196 resolution
W/O antialiasing

Original image 
(continuous)
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Computer Graphics

Aliasing

 Simulation of an analog low-pass filter

Original image 
(continuous)

“Blurred”
original image 

49x49 resolution 
from the “blurred” 

image

Reminder :
49x49 resolution

with 4x4 oversampling
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Computer Graphics

Aliasing

 Common filters used in an image resampling
 Nearest neighbour

 Strong aliasing

 Bilinear interpolation (using the 4 nearest pixels)
 Softer appearance

 Bicubic interpolation (using the 16 nearest pixels)
 Gaussian filter
 Lanczos

 Uses an approximation of the sinc() function  - which is the perfect 
low pass filter but suffers from being non-local.
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Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Transformation

Filtering

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband 
function

Reconstructed
function

Transformed 
function

Narrowband transformed
function

Samples
(pixels)

Display

Display

“Real world” 
continuous function
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Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Transformation

Filtering

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband 
function

Reconstructed
function

Transformed
function

Narrowband transformed
function

Samples
(pixels)

Display

Narrowband 
function
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Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Transformation

Filtering

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband 
function

Reconstructed
function

Transformed
function

Narrowband transformed
function

Samples
(pixels)

Display

Samples
(pixels)
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Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband 
function

Reconstructed
function

Reconstructed 
function

Transformation

Filtering

Sampling

Reconstruction

Transformed
function

Narrowband transformed
function

Samples
(pixels)

Display
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Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Transformation

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband 
function

Reconstructed
function

Transformed 
function

Transformed 
function

÷2

Filtering

Sampling

Reconstruction
Narrowband transformed

function

Samples
(pixels)

Display
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Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Filtering

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband 
function

Narrowband transformed
function

Narrowband transformed
function

Transformation

Reconstructed
function

Transformed 
function Sampling

Reconstruction

Samples
(pixels)

Display
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Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband 
function

Samples
(pixels)

Display

Samples
(pixels)

Filtering

Narrowband transformed
function

Transformation

Reconstructed
function

Transformed 
function
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Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband 
function

Samples
(pixels)

Display

Displayed reconstructed 
function 

Filtering

Narrowband transformed
function

Transformation

Reconstructed
function

Transformed 
function
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Aliasing

 Image Processing; a series of operations

Sampling 1

Reconstruction 1

Sampling 2

Reconstruction 2

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband 
function

Samples
(pixels)

Display
Screen

Scanner

Camera...

 Sampling 1 – in a device...
 Optional filtering

 May be included in reconstr. 1

 Reconstruction 2 – in a device 
(screen!)

Filtering

Narrowband transformed
function

Transformation

Reconstructed
function

Transformed 
function
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Aliasing

 The case of computer generated images

Sampling ?

Reconstruction

Lowpass filtering ?

Mathematical
world

Samples
(pixels)

Narrowband 
function

Samples
(pixels)

Display
Screen

Realistic rendering 
software

...

 Questions arise about low-pass 
filtering and the sampling of the 
“mathematical” world that we 
are representing.

 Difficult to separate these two 
operations.

 I will discuss about it later.
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Aliasing

J. Blinn's Corner
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Aliasing

 Convolution

 f∗g t = ∫
−∞

∞

f t− g d 
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Computer Graphics

Aliasing

 Reconstruction
 From samples
 Convolution with a certain function

 Linear, bicubic, Gaussian, etc...
 Interpolates the signal where it no longer exists (between samples)
 Back to a continuous signal ...
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Aliasing

 Reconstruction with a linear filter (« hat ») 
 Each sample is "multiplied" by the hat function and the 

sum constitutes the reconstructed function

*
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Aliasing

 Reconstruction with a Gaussian filter 
 Each sample is "multiplied" by the Gaussian function 

and the sum constitutes the reconstructed function 

*
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Aliasing

 Reconstruction with sinc
 Convolution with a cardinal sine that has an infinite 

support : provided that the original signal meets the 
Shannon condition, the exact original signal is 
reconstructed !

*

sinc x=
sin x
 x
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Aliasing

 The sinc has an infinite support
 In theory, the computing effort is infinite ...
 In practice, the function is truncated.

 This is the famous “Lanczos” filter.

L( x)={
sinc (x) sinc (x /a) if −a< x<a , x≠0
1 if x=0
0 otherwise

a=2

a=3*Cornelius Lanczos, Hungarian mathematician (1893-1974)
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Aliasing

Bicubic interpolation

Nearest 
neighbor
interpolation 

Bilinear interpolation
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Aliasing

 Transformation
 Change the position of the image / or the samples

 Rotation
 Scaling
 Etc...

 In cases where the targeted sample density is lower, 
filtering with a low-pass filter is needed before 
resampling

 In cases where the targeted sample density is 
identical or finer, a simple resampling after 
reconstruction is sufficient
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Aliasing

 Example with a rotation

u

v

x

y

f
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Aliasing

 Direct mapping – bad idea

u

v

x

y

f

Several source samples 
in the destination pixel

No source sample 
in the destination pixel

Loop on source image...
but difficult to “reconstruct” the target 
image (it is an inverse problem)
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Aliasing

 Inverse mapping

u

v

x

y

f-1

Loop on pixels of the target 
image ...

- Resampling is unavoidable
- A reconstruction of the source image is used here
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Aliasing

 The reconstruction is crucial to the quality of the 
target image
 Nearest neighbour – lots of aliasing
 Bilinear – not much aliasing but blurred image (loss of 

details)
 Bicubic and « Lanczos » - better (but more 

computationally expensive)
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Aliasing

 Nearest neighboor :

u

v
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Aliasing

 Serie of 36 rotations of 5° → 180° followed by a 
mirroring (without any loss)
 Original images magnified 10x
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Aliasing

 « Nearest neighbour » filter
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Aliasing

 Bilinear :

u

v

f u ,v = f 0,01−u1−v 
 f 1,0u 1−v  f 0,11−uv

 f 1,1uv

f 0,1

f 1,0f 0,0

f 1,1

u=
u−umin

umax−umin

v=
v−v min

vmax−vmin

f u ,v 
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Aliasing

 « Bilinear » filter
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Aliasing

 Bicubic :

u

v

f −1,2

f 2,−1f −1,−1

f 2,2

v=
v−v min

vmax−vmin

f u ,v 

f 0 ,2 f 1,2

f 1 ,1

f u ,v =a00a01va02v
2
a03v

3

a10 ua11uva12 uv
2
a13uv

3

a20u
2
a21u

2
va22u

2
v

2
a23u

2
v

3

a30 u
3
a31 u

3
va32 u

3
v

2
a33u

3
v

3

u=
u−umin

umax−umin

f 0 , 0
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double bicubicInterpolate (double[][] p, double u, double v)
{
double a00 = p[1][1];
double a01 = p[1][2] - p[1][1]/2 - p[1][0]/3 - p[1][3]/6;
double a02 = p[1][0]/2 - p[1][1] + p[1][2]/2;
double a03 = p[1][1]/2 - p[1][0]/6 - p[1][2]/2 + p[1][3]/6;
double a10 = p[2][1] - p[1][1]/2 - p[0][1]/3 - p[3][1]/6;
double a11 = p[0][0]/9 + p[0][1]/6 - p[0][2]/3 + p[0][3]/18 + p[1][0]/6 + p[1][1]/4 - p[1][2]/2 + p[1][3]/12 - 
p[2][0]/3 - p[2][1]/2 + p[2][2] - p[2][3]/6 + p[3][0]/18 + p[3][1]/12 - p[3][2]/6 + p[3][3]/36;
double a12 = p[0][1]/3 - p[0][0]/6 - p[0][2]/6 - p[1][0]/4 + p[1][1]/2 - p[1][2]/4 + p[2][0]/2 - p[2][1] + p[2]
[2]/2 - p[3][0]/12 + p[3][1]/6 - p[3][2]/12;
double a13 = p[0][0]/18 - p[0][1]/6 + p[0][2]/6 - p[0][3]/18 + p[1][0]/12 - p[1][1]/4 + p[1][2]/4 - p[1][3]/12 - 
p[2][0]/6 + p[2][1]/2 - p[2][2]/2 + p[2][3]/6 + p[3][0]/36 - p[3][1]/12 + p[3][2]/12 - p[3][3]/36;
double a20 = p[0][1]/2 - p[1][1] + p[2][1]/2;
double a21 = p[0][2]/2 - p[0][1]/4 - p[0][0]/6 - p[0][3]/12 + p[1][0]/3 + p[1][1]/2 - p[1][2] + p[1][3]/6 - p[2]
[0]/6 - p[2][1]/4 + p[2][2]/2 - p[2][3]/12;
double a22 = p[0][0]/4 - p[0][1]/2 + p[0][2]/4 - p[1][0]/2 + p[1][1] - p[1][2]/2 + p[2][0]/4 - p[2][1]/2 + p[2]
[2]/4;
double a23 = p[0][1]/4 - p[0][0]/12 - p[0][2]/4 + p[0][3]/12 + p[1][0]/6 - p[1][1]/2 + p[1][2]/2 - p[1][3]/6 - 
p[2][0]/12 + p[2][1]/4 - p[2][2]/4 + p[2][3]/12;
double a30 = p[1][1]/2 - p[0][1]/6 - p[2][1]/2 + p[3][1]/6;
double a31 = p[0][0]/18 + p[0][1]/12 - p[0][2]/6 + p[0][3]/36 - p[1][0]/6 - p[1][1]/4 + p[1][2]/2 - p[1][3]/12 + 
p[2][0]/6 + p[2][1]/4 - p[2][2]/2 + p[2][3]/12 - p[3][0]/18 - p[3][1]/12 + p[3][2]/6 - p[3][3]/36;
double a32 = p[0][1]/6 - p[0][0]/12 - p[0][2]/12 + p[1][0]/4 - p[1][1]/2 + p[1][2]/4 - p[2][0]/4 + p[2][1]/2 - 
p[2][2]/4 + p[3][0]/12 - p[3][1]/6 + p[3][2]/12;
double a33 = p[0][0]/36 - p[0][1]/12 + p[0][2]/12 - p[0][3]/36 - p[1][0]/12 + p[1][1]/4 - p[1][2]/4 + p[1][3]/12 
+ p[2][0]/12 - p[2][1]/4 + p[2][2]/4 - p[2][3]/12 - p[3][0]/36 + p[3][1]/12 - p[3][2]/12 + p[3][3]/36;

double u2 = u * u; double u3 = u2 * u; double v2 = v * v; double v3 = v2 * v;
return a00      + a01 * v      + a02 * v2      + a03 * v3 +
       a10 * u  + a11 * u * v  + a12 * u * v2  + a13 * u * v3 +
       a20 * u2 + a21 * u2 * v + a22 * u2 * v2 + a23 * u2 * v3 +
       a30 * u3 + a31 * u3 * v + a32 * u3 * v2 + a33 * u3 * v3;
}

Aliasing

Here , p[i][j]=f(i-1, j-1)
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Aliasing

 « Bicubic » filter
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Aliasing

 Lanczos :

u

v
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Aliasing

 « Lanczos » filter
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Aliasing
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Aliasing

Without antialiasing
nearest neighbour

Antialiasing
by oversampling 4
and simple average

Antialiasing by 
Lanczos filtering
(ideal but costly)

 Another example 
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Aliasing

 Case of downsampling

u

v

The input data must be filtered with a low pass filter, that is matched
with the resolution of the destination image
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Image storage
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Image storage

 Idea : images are not random
 We can take advantage of the structure to store images
 Two approaches

 Vectorised images
 Discretized images

 Compression without losses
 Compression with controled losses

jpg

tiff gif png

svg

bmp
exr

cin
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Image storage

 TIFF : universal format but sometimes partially implemented
 JPG : limited to 8bits/channel, DCT compression with losses 

(WWW)
 PNG : open format, 1/2/4/8 indexed bits, 8/16 bits/channel ; alpha 

channel (transparency), LZW type compression – no patent (WWW)
 GIF : indexed 8 bits, transparency (1 bit), LZW type compression, 

possible animation, expired patent (WWW)
 SVG : vector images
 CIN : old format « cineon » 10 bits / channel, used for special 

effects. Lossless compression
 EXR : open format Lucasfilm (ILM): 16/32 bits by channel in floating 

point, lossless compression
 BMP : old Windows format without compression limited to 8 bits by 

channel + transparency
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Image storage

 How to choose ?
 Outline drawing, to be scaled --- vector format
 Images in general, sampled (bitmap) format
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Image storage

 Vector images
 Generally no “geometric” compression
 A typical example : character fonts destined to be 

enlarged
 Ideal as a format for line drawings 

WMF : windows metafile (exclusively windows)

SVG : Scalable vector graphics (open standard)

+ proprietary formats : coreldraw, adobe illustrator...

DXF : for technical drawings (Autocad)
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Image storage

 Bitmap images
 Uncompressed storage

 BMP (old), TIFF (1/8/16 bits/c, floating point) , PNG (8,16 bits/c,  
alpha channel,1,2,4,8 bits  indexed col.), PNG (indexed colors + 
alpha channel), EXR (floating point 16,32 bits/channel)

 Lossless compression
 TIFF, PNG, GIF, EXR

 Lossy compression
 TIFF, JPG(8 bits), JPEG2000 (improved JPG but not used due to 

patents !)
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Image storage

 For images with few colours, and/or with sharp 
contrasts, never use JPG. 

PNG
1176 bytes

JPG
3225 bytes
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Image storage

 Pictures or images with continuous tones are 
adapted to JPG.

24 bit JPG : 85Kbytes  



60

Computer Graphics

Image storage

 Pictures or images with continuous tones are 
adapted to JPG.

24 bit PNG / lossless : 646Kbytes



61

Computer Graphics

Image storage

 Pictures or images with continuous tones are 
adapted to JPG.

 8 bit PNG (256 indexed colours) : 227 Kbytes
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Image storage

 Pictures or images with continuous tones are 
adapted to JPG.

4 bit - PNG  (16 indexed colours) : 108 Kbytes
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Image storage

 High contrast images (HDR) or images that will 
be manipulated (brightness/contrast ...)
 16 bit PNG
 16 bit TIFF
 EXR

 Images for the WWW or for display on desktop 
screen
 GIF, 8 bit PNG, JPG

 If space is not a problem, always prefer lossless 
compression and a high nb of bit/channel.
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Image storage

There is no universal image format !
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Perspective and transformation matrices 
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Perspective

 « Classical » projections

Plane projections

Parallel Perspective

Orthogonal Oblique 1vanishing 
point

3 vanishing
points

Multiview Axonometric

2 vanishing 
points
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Perspective
Perspective (central) projection

Parallel projection

Axonometric
Orthogonal

Oblique projection
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Perspective

 Vanishing points in perspective projection
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Perspective
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Perspective

 The perspective is a fairly accurate 
representation of what the eye sees
 Based on central projection
 In first approximation, the eye (or a camera) is made 

of a lens (the eye's lens), and a projection plane of the 
image (retina). The lens may be considered as a point 
in what follows.

S
A

A'

P f
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Perspective

 Equivalent configuration used in computer 
graphics

S
AA'

f
P
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Perspective

 Parallel projection is the limiting case where f 
tends to infinity. 

S AA'

f P
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Geometric transformations
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Transformation matrices

 Geometric transformations
 Two goals 

 Get from 3D coordinates objects a projection on the screen plane 
(coordinates 2D + depth details)

 From elementary objects, they can be placed anywhere in the 
volume, optionally modified by operations such as shearing or 
scaling.
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Affine transformations

 Case of linear transformations
 Affine transformations

P ≡A⋅Pu , u∈ℝ3
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identity : u = 0, A = I ,  I  is the identity
matrice,

translation :
u is the translation vector, A = I,

scaling 
u = 0, A is a diagonal matrice, 
whose terms define the scales
along the axes,

rotation : 
u = 0,  A is the rotation matrice,

Some affine transformations

u=0 ; A=[
cos −sin  0
sin  cos 0

0 0 1]

u=0 ; A=[
a 0 0
0 b 0
0 0 c ]

u=[
a
b
c ] ; A=[

1 0 0
0 1 0
0 0 1 ]

u=0 ; A=[
1 0 0
0 1 0
0 0 1 ]
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shearing :
where a, b, c are the 3shearing 
coefficients.

u=0 ; A=[
1 a b
0 1 c
0 0 1 ]

Some affine transformations

If the matrice A is orthogonal : AT  = A-1 

Important particular 
case :

then this transformation preserves angles and lengths.
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 Additive treatment for the translation

The treatment is not the same for all operations ...

Matrix treatment

P1=S⋅P0

P1=R⋅P0

P1=C⋅P0

P1=P0t

Multiplicative treatment
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Homogeneous coordinates

 In order to make the identical treatment of the 
translation, we add one coordinate, set to 1 for 
now

 The additional coordinate will be used for the 
perspective projection in the sequel

[
1 0 0 r
0 1 0 s
0 0 1 t
0 0 0 1

]⋅[
x
y
z
1
]=[

xr
ys
zt

1
]

TranslationOther operations
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- translation :

- scaling :

Transformation matrices

D t =[
1 0 0 u
0 1 0 v
0 0 1 w
0 0 0 1

] ; t=[
u
v
w
1
]

S p , q , r =[
p 0 0 0
0 q 0 0
0 0 r 0
0 0 0 1

]
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- rotation around x-axis :

- rotation around z-axis :

- rotation around y-axis :

R z =[
cos −sin  0 0
sin  cos 0 0

0 0 1 0
0 0 0 1

]
R x =[

1 0 0 0
0 cos −sin  0
0 sin  cos 0
0 0 0 1

]
R y =[

cos 0 sin  0
0 1 0 0

−sin  0 cos 0
0 0 0 1

]

Transformation matrices
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- shearing (general case) Ca , b , c=[
1 a b 0
0 1 c 0
0 0 1 0
0 0 0 1

]
Transformation matrices

 One can combine these transformation matrices 
by simple multiplication
 One should respect the ordering (not commutative !)

Gn=Gn−1⋯G2⋅G1
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Transformation matrices

 In particular, if one expresses an additional 
transformation T:
 Relative to the origin of the reference (O)

 Relative to the object (transform of O by G
n-1

 )

 Relative to an arbitrary point A

Gn=T⋅Gn−1

Gn=Gn−1⋅T

Gn=D x A , y A , zA⋅T⋅D−x A ,− yA ,− z A⋅Gn−1
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Transformation matrices

 Change of reference (for parallel projections)
 3D global reference to reference 2D screen
 12 parameters in the transformation
 We can specify the transformation uniquely by 4 

points (forming a tetrahedron) and their transforms
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0

1

2

3
3D

2D (or 3D)

P 0=[
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

]

Transformation matrices

P 1=[
x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

1 1 1 1
]

T=P1⋅P0
−1

P 1=T⋅P0

z x

y

y'

x'z'

O

O'
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Transformation matrices

This matrix is used to project the coordinates in an arbitrary
 axis system

P 0=[
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

] P 0
−1
=[
−1 −1 −1 1
1 0 0 0
0 1 0 0
0 0 1 0

] P 1=[
x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

1 1 1 1
]

T=[
x1−x0 x2−x0 x3−x0 x0

y1− y0 y2− y0 y3− y0 y0

z1−z0 z2−z0 z3−z0 z0

0 0 0 1
]
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Transformation matrices

 Using the transformations that we have just seen 
, we can  :

- Transform space coordinates (x, y, z) coordinates to 
screen coordinates (x ', y', z '= depth), expressing the 
position in space of the view associated with the 
screen

- Consider a scale factor to adjust the size of the 
virtual screen space and switch from (x', y') to (i, j) 
which is the geometrical position on the screen

 The third coordinate (depth z') will be used to compute 
hidden faces.
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Transformation matrices

 For points where the 4th (homogenous) 
coordinate w is different from one
 We consider that all points situated along a line going 

through the origin are equivalent
 This corresponds to a central projection on the 

hyperplane w = 1; the following points are 
(geomtrically) equivalent:

 If w = 0, it means a vector in homogeneous 
coordinates

 There is a way to distinguish vectors and points !

[wx , wy ,wz , w ]⇔[ x , y , z ,1]

[ x , y , z ,0]
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Transformation matrices

 Perspective transformation
 We will consider a special case that does not betray 

the generality of the approach
 P is at the origin O of the reference frame
 The screen is a plane of normal n=(0,0,1) (perpendicular to z), 

containing P
 We look towards the positive z.

AA'

d

z

y x

P(0,0,0)

S(0,0,-d)

Q(x,y,z)

Q'(x',y',z')

x '

x
=

y '

y
=

d
d z 

z'
=0
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Transformation matrices

 Screen coordinates in function of space 
coordinates

 We will change that so that the 3rd coordinate is going 
through the same scaling

z'
=0

x'
=

x

1 z
d

y '
=

y

1 z
d

z'
=

z

1 z
d

x'
=

x

1 z
d

y '
=

y

1 z
d
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Transformation matrices

 The three Cartesian coordinates 

 may be expressed differently in the homogeneous 
space (via the equivalence relation) :

x'
=

x

1 z
d

y '
=

y

1 z
d

z'
=

z

1 z
d


x

1
z
d

, y

1
z
d

, z

1
z
d

,1≡x , y , z ,1 z
d

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Transformation matrices

 We can then write the transformation as a linear 
transformation (in fact, a shear) in the 
homogeneous space

 The following operations lead to the desired image :
 First, the 4D “shearing”
 Then, a perspective projection into 3D space, it is called the 

perspective division - it is a non-linear transformation
 Then an orthogonal projection on the screen for which z = constant


x
y
z

1
z
d
=

1 0 0 0
0 1 0 0
0 0 1 0

0 0 
1
d

1 ⋅
x
y
z
1

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Transformation matrices

 Field of view and effective construction of 
transformation matrices
 Canonical view field



 Screen   :  consists in             pixels, centred at the origin, in the 
plane

 Transformation of the canonical field to the screen coordinates

x c , yc , zc∈[−1,1 ]3

n x , n y

x

y

xz 
x p

y p

z p

1
=

nx

2
0 0

n x−1
2

0
ny

2
0

n y−1

2
0 0 1 0
0 0 0 1




M s

⋅
xc

yc

zc

1


sight

x p , y p∈[−0.5 , n x−0.5 ]×[−0.5 , n y−0.5 ]

NB : If  y
c
 is reversed, it must be taken into account ...
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(l,b,f)

(-1,-1,-1)

Transformation matrices

 Orthographic projection
 We will match a specified volume with the canonical 

volume
 This volume is aligned with the canonical volume but does not have 

the same center, nor the same dimensions

x d , y d , zd ∈[l , r ]×[b ,t ]×[ f , n]

(1,1,1)

(r,t,n)
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Transformation matrices

 The process resorts to a translation followed by a 
dilation.


xc

yc

zc

1
=

2
r−l

0 0 0

0
2

t−b
0 0

0 0
2

n− f
0

0 0 0 1
⋅

1 0 0 −
rl

2

0 1 0 −
bt

2

0 0 1 −
n f

2
0 0 0 1




M c

⋅
xd

yd

z d

1


fn b

t
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Transformation matrices

 Viewpoints with an arbitrary position and 
orientation
 One would like to watch in an arbitrary direction and 

from any point
 The position of the eye (o), the view direction (r) and “noon” -local 

vertical line for the observer- (m) are defined
 An orthonormal (o, u, v, w) frame is constructed from the data.

x

y

xz
r

m
o

w v

u

w=−
r
∥r∥

u=−
m×w
∥m×w∥

v=w×u
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Transformation matrices

 The alignment of the space coordinates with 
those of the viewer is done with two changes
 Translation bringing the coordinates of the eye to the 

origin
 Rotation about the axes to align them with the global 

axes


xd

y d

zd

1
=

xu yu zu 0
xv yv z v 0
xw yw zw 0
0 0 0 1

⋅
1 0 0 −x o

0 1 0 −yo

0 0 1 −zo

0 0 0 1



M v

⋅
xe

ye

ze

1

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Transformation matrices

 Perspective transformation

o
g

z

d=n

y

P
erspective plane

y
s

y s=
d
z

y
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Transformation matrices

n f

 Here we want to keep the 'z' value of plane f and keep 
(x, y, z) on plane n (projection plane or perspective 
plane)
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Transformation matrices

 To use homogeneous coordinates,
 All three components must be divided by the same 

value
 Recall what we saw before :

 Compared to this matrix, it has a displacement to bring the eye to 
(0,0,0) , thus keeping z=n unchanged

 And a small change to keep the points z = f unchanged as well


x
y
z

1
z
d
=

1 0 0 0
0 1 0 0
0 0 1 0

0 0 
1
d

1 ⋅
x
y
z
1

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Transformation matrices

 Keep z = f  and z = n unchanged


x

n
z

y
n
z

 z
n
z

1
≡

1 0 0 0
0 1 0 0
0 0  

0 0 
1
n

0 ⋅
x
y
z
1
 {

n
n

n
=n

n
 f 

f
= f
⇒ {=

n f
n

=− f
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Transformation matrices

 Perspective matrix

 The matrix can be multiplied by an arbitrary constant 
(because of the homogeneous coordinates). 
Multiplying by n yields : 


xe

ye

ze

1
≡

1 0 0 0
0 1 0 0

0 0 n f
n

− f

0 0 1
n

0 ⋅
x
y
z
1



xe

ye

ze

1
≡

n 0 0 0
0 n 0 0
0 0 n f − f n
0 0 1 0




M p

⋅
x
y
z
1

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Transformation matrices

 The perspective matrix that we have just defined 
suppose one looks in the direction of the 
negative z
 We must therefore apply it after the change of point of 

view !
 The complete chain of transformations is therefore :

M=M s⋅M c⋅M p⋅M v
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Transformation matrices

 In particular, the matrix 

 is called perspective projection matrix, and allows to 
reach from the real space the canonical volume [-1,1]3

M proj _ persp=M c⋅M p=
2 n
r−l

0
lr
l−r

0

0
2 n

t−b
bt
b−t

0

0 0
f n
n− f

2 f n
f −n

0 0 1 0


z=−∣ f∣ zc=−1

z=−∣n∣ zc=1
M=M s⋅M proj _ persp⋅M v

Depends on the hardware Depends on the type of projection Depends on your point of view
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Transformation matrices

 OpenGL...

"Mathematical" convention used in this course

OpenGL convention
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Transformation matrices

 By multiplying by -1 and substitute

one obtains :


2 n

r−l
0 lr

l−r
0

0
2 n

t−b
bt
b−t

0

0 0
f n
n− f

2 f n
f −n

0 0 1 0
≡
−2 n
r−l

0 rl
r−l

0

0
−2 n
t−b

tb
t−b

0

0 0
− f −n
n− f

2 f n
n− f

0 0 −1 0
≡

2∣n∣
r−l

0
rl
r−l

0

0
2∣n∣
t−b

tb
t−b

0

0 0
∣ f ∣∣n∣
∣ f ∣−∣n∣

2∣ f ∣∣n∣
∣ f ∣−∣n∣

0 0 −1 0


f n0  et −n=∣n∣ − f =∣ f ∣ nf =∣n∣∣ f ∣ n− f =∣ f ∣−∣n∣
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Transformation matrices

 Conventional OpenGL perspective projection 
matrix 


2∣n∣
r−l

0
rl
r−l

0

0
2∣n∣
t−b

tb
t−b

0

0 0
∣ f ∣∣n∣
∣ f ∣−∣n∣

2∣ f ∣∣n∣
∣ f ∣−∣n∣

0 0 −1 0
 

2∣n∣
r−l

0
rl
r−l

0

0
2∣n∣
t−b

tb
t−b

0

0 0
∣ f ∣∣n∣
∣n∣−∣ f ∣

2∣ f ∣∣n∣
∣n∣−∣ f ∣

0 0 −1 0



M proj _ persp _ OpenGL

z=−∣ f∣ zc=1

z=−∣n∣ zc=−1
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Transformation matrices

 Idem without perspective transformation


2

r−l
0 0 0

0
2

t−b
0 0

0 0
2

n− f
0

0 0 0 1
⋅

1 0 0 −
rl

2

0 1 0 −
bt

2

0 0 1 −
n f

2
0 0 0 1




M c

=
2

r−l
0 0

lr
l−r

0
2

t−b
0

bt
b−t

0 0
2

n− f
f n
f −n

0 0 0 1



M proj _ orth
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Transformation matrices

 OpenGL orthographic projection matrix

 In all cases :


2

r−l
0 0

lr
l−r

0
2

t−b
0

bt
b−t

0 0
2

n− f
f n
f −n

0 0 0 1



M proj _ orth


2

r−l
0 0

lr
l−r

0
2

t−b
0

bt
b−t

0 0
−2
∣ f ∣−∣n∣

∣ f ∣∣n∣
∣ f ∣−∣n∣

0 0 0 1



M proj _ orth _ OpenGL

M=M s⋅M proj⋅M v
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Transformation matrices

 Usual simplifications
 In general, one looks at the center of the volume

 We also want square pixels

[ l , r ]×[b , t ]×[ f , n]

r=−l=
w
2

t=−b=
h
2

w
h
=

n x

n y


1
w

0 0 0

0
n x

w ny

0 0

0 0
−2
∣ f ∣−∣n∣

∣ f ∣∣n∣
∣ f ∣−∣n∣

0 0 0 1




M proj _ orth _ OpenGL


∣n∣
w

0 0 0

0
∣n∣nx

w n y

0 0

0 0
∣ f ∣∣n∣
∣n∣−∣ f ∣

2∣ f ∣∣n∣
∣n∣−∣ f ∣

0 0 −1 0




M proj _ persp _OpenGL
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Transformation matrices

 One can also specify the field of view (obviously for 
perspective projections only)

tan =
w
∣n∣
⇒w=∣n∣tan


1

tan
0 0 0

0
nx

n y tan 
0 0

0 0
∣ f ∣∣n∣
∣n∣−∣ f ∣

2∣ f ∣∣n∣
∣n∣−∣ f ∣

0 0 −1 0




M proj _ persp _ OpenGL
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Transformation matrices

 Exercise
 Compute the transformation matrix for an observer located at (x = 

10, y = 10, z = 10) facing the direction (-1, -1, -1). A vector from the 
vertical plane is the vector (0,1,0). The screen is 1000 by 1000 
pixels.

 Angle of view : 45° (tan 45 = 1)
 Plane position n and f : z=10 and z=20 respectively

w=−
g
∥g∥ u=−

t×w
∥t×w∥

v=w×u


xu yu zu 0
xv yv zv 0
xw yw z w 0
0 0 0 1

⋅
1 0 0 −xo

0 1 0 − yo

0 0 1 −z o

0 0 0 1



M v


2∣n∣
r−l

0
rl
r−l

0

0
2∣n∣
t−b

tb
t−b

0

0 0
∣ f ∣∣n∣
∣n∣−∣ f ∣

2∣ f ∣∣n∣
∣n∣−∣ f ∣

0 0 −1 0



M proj _ persp _ OpenGL

(
n x

2
0 0

n x−1
2

0
n y

2
0

n y−1

2
0 0 1 0
0 0 0 1

)
⏟

M s
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Transformation matrices

 How to select (point at an object with the mouse 
and pick the object)
 Using the reverse transformation
 Need to know for each pixel, the geometric primitive 

recently drawn
 We'll see how later...
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Two paradigms for synthetic image 
generation
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2 paradigms...

 A projection of the objects on the plane of the 
screen
 Purely geometrical aspects

 Using transformation matrices
 Need for hidden line removal algorithm
 « Clipping » and « culling » techniques

 Allows to draw only visible entities (and minimizing side effects)

 Colouring / shadowing
 Lighting
 Textures
 Laws of reflection

 Possibility of real-time graphics (e.g. videogames, ...)
 OpenGL type implementation (in hardware)
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2 paradigms...

 Projective “à la OpenGL” paradigm
 Start from the objects and their coordinates in space
 Determine at each point or every facet, lighting 

features, textures, etc ...
 Project into the coordinate space of the screen

 Transformation matrices seen before

 Draw the object in discrete form
 Raster algorithm -  (!) aliasing 
 hidden faces !
 The colour of each pixel is determined by the information calculated 

above (previously interpolated or computed on-the-fly)
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2 paradigms...

 Ray-tracing paradigm
 Geometric aspects

 We start form pixels to meet objects
 Finding the intersection of a ray and objects (usually triangulated)

 Problem of the hidden faces  : automatically solved !
 Culling is useful (to avoid unnecessary searches)

 Colouring
 Realistic reflection laws
 Realistic lighting law
 Complex textures

 Relatively slow but higher fidelity
 Easy introduction of new light/texture models
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2 paradigms...

 Ray-tracing paradigm
 Start from screen pixels
 Draw a line through the eye and that pixel and 

calculate the intersection with the first object 
encountered online
 Particular case if the surface is a dielectric or metal (smooth metal or 

glass, liquid etc ...) :  the ray is reflected, or deflected or both

 Determine the color of the object at this point
 Use of physical or empirical laws
 Consider the light - and shadows

 Give the determined pixel color
 (!) again, problems of potential aliasing !
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2 paradigms...

 Common issues for both techniques
 Laws of light-surface interaction, reflection, types of 

surfaces
 Textures
 Geometrical modelling
 Meshes
 Colour theory
 Aliasing
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2 paradigms...

 Specific topics to ray-tracing
 Radiosity equation
 Calculation of shadows
 Refraction, reflection
 Use of Computational Geometry to lower the 

computation costs
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2 paradigms...

 Specific issues to the projective approach
 Visibility problems (clipping and hidden faces)
 Raster algorithms
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2 paradigms...

 There are hybrid approaches
 Allows to combine the advantages of both paradigms

 Speed (projective approach)
 Fidelity (ray tracing approach)
 They are more or less close to a very versatile implementation in 

software of the more rigid OpenGL stack.

 E.g. Pixar Renderman.
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Project
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Project

 Available topics
 A) Homemade Ray Tracer

 Upgrade an existing ray-tracing program (which I provide)
 Programming & Implementation

 B) Topic of your choice
 If you want to work on a topic that interests you and is within the 

scope of the course (I have to validate early enough !)
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Project

 Project guidlines
 Individual project
 Deliverables

 (A) Homemade Ray Tracer
 a) “Specifications” : definition of what you will do (+ who) , planning ...
 b) Final report detailing the philosophy of your contribution (why and 

how) + code + results and critical analysis + detailed personal 
contributions if you are two

 c) Small presentation to show the results
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Project

 (B) Own topic
 a) Definition of the topic (originality, interest, context ...)
 b) “Specifications” : definition of what you will do (+ who) , planning ...
 c) Final report detailing the philosophy of your contribution (why and 

how) + code + results and critical analysis + detailed personal 
contributions if you are two

 d) Small presentation to show the results

 Physical limits of the documents
 Specifications : 1-2 A4 pages
 Final report : max 15 A4 pages
 Definition of the subject (B) : 1 A4 page
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Project

 Deadlines
 Choice of subjects  :  Feb 27th 

 In the case C) definition of the subject :  Feb 27th 

 Specifications and planning : March 13th 
 Submission of reports : before June 1st 
 Relative weight in the final mark : TBD
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Project

 Homemade Ray-tracer
 Canvas available on the course's website

http://www.cgeo.ulg.ac.be/infographie

 Developed in portable C ++ under Linux
 Uses OpenGL and FLTK

 I do not want you develop a significant GUI for what you're doing 
(takes too long) - simply implement models of reflection, shadows, 
geometry etc ... and test this directly in the code (in the main() 
function for example). GUI might be an option when everything else 
works.

 There are (very) few comments ...
 You are allowed to modify the existing code...
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 Subjects related to the HomeMade RayTracer

1 – Implement subsurface scattering
 Rendering of semi-transparent objects (e.g. skin)

2 – Interfacing with an existing solid modeler
 CATIA files, Solidworks, etc.

3 – Metropolis algorithm
 Unbiased physical rendering

4 – Efficient ray intersection with smooth CAD 
surfaces
 bézier/NURBS surfaces and the like

All – Gather all !
 Keep in mind that you work together...part of the evaluation depends 

on the integration of all developments in the same source tree. 


