
1

Computer Graphics

Course outline

 Introduction
 Images and display techniques

 Bases
 Gamma correction
 Aliasing and techniques to remedy
 Storage

2

Computer Graphics

Course outline

 3D Perspective & 2D / 3D transformations
 Go from a 3D space to a 2D display device

 Two paradigms for image synthesis
 Representation of curves and surfaces

 Splines & co.
 Meshes

 Realistic rendering by ray tracing
 Concepts and theoretical bases

3

Computer Graphics

Aliasing

« Aliasing » (crénelage in French)
 Appears during image synthesis or capture, during

spatial discretization (transformation of a “continuous”
image to discrete pixels)
 Small experiment : The test image is a series of black and white

lines, with an increasing density.

1 line/4 pixels 1/2

4

Computer Graphics

Aliasing

1/1 3/2

5

Computer Graphics

Aliasing

2/1 199/100

6

Computer Graphics

Aliasing

16/5

 In fact, one should not have any
spatial frequency that is higher
than a given cutoff frequency,
that depends on the sampling
density.

7

Computer Graphics

Aliasing

 Nyquist-Shannon theorem
 If the spectrum of a function doesn't contain frequencies higher than

e.g. B, then it is completely determined by a series of samples (in
time, space …) separated by 1 / (2B) , or of frequency equal to 2B .
2B is the Nyquist frequency.

 Otherwise, there is aliasing:

Signal
 reconstruction

Original
signal

2f
nyquist

2f
nyquist

Fourrier transform (amplitude)

f̂ (ω)= ∫
−∞

+∞

f (t)eiω t dt

8

Computer Graphics

Aliasing

 Moiré patterns

9

Computer Graphics

Aliasing

How to limit aliasing ?
 By increasing the sampling density to respect Nyquist-

Shannon's theorem ?
 By filtering the signal with a low pass filter to be in the

window of Shannon's theorem for a given sampling
density ?

 A combination of both... ?

10

Computer Graphics

Aliasing

 Increase the sampling density (or rate)
 Equivalent to increase the image resolution
 But : real life images are often fractal

 High frequency details are such that spatial resolution is huge
 But : artificially generated images include sudden changes in

intensity (e.g. black lines on white background)
 Cf Fourier decomposition of a square signal :

Spectrum of a square signal : odd harmonics of amplitude 1/n ...

This solution alone is not working well.

11

Computer Graphics

Aliasing

 Analog lowpass filter
 For capturing devices, this must be done before the actual capture
 Makes slightly blurred image - but not too much!
 This is exactly what we find on the sensor of digital cameras : An AA

filter positioned between the lens, and the sensor.
 Many technologies are available.

12

Computer Graphics

Aliasing

 Example: analog filter (physical) in a digital camera

Without
antialiasing
filter

With AA filter
in front of the
sensor

13

Computer Graphics

Aliasing

 Numerical low-pass filtering
 When one creates artificial images, no analog AA is possible
 The usual way is to use oversampling (sampling with a higher rate),

followed by a arithmetic mean to return to the actual (desired)
sampling rate

 It is also possible to introduce variability in the sampling positions
(e.g. add a random contribution to the positions of sample in a pixel)

49x49 resolution
with 4x4 oversampling

 49x49 resolution
W/O antialiasing

196x196 resolution
W/O antialiasing

Original image
(continuous)

14

Computer Graphics

Aliasing

 Simulation of an analog low-pass filter

Original image
(continuous)

“Blurred”
original image

49x49 resolution
from the “blurred”

image

Reminder :
49x49 resolution

with 4x4 oversampling

15

Computer Graphics

Aliasing

 Common filters used in an image resampling
 Nearest neighbour

 Strong aliasing

 Bilinear interpolation (using the 4 nearest pixels)
 Softer appearance

 Bicubic interpolation (using the 16 nearest pixels)
 Gaussian filter
 Lanczos

 Uses an approximation of the sinc() function - which is the perfect
low pass filter but suffers from being non-local.

16

Computer Graphics

Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Transformation

Filtering

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband
function

Reconstructed
function

Transformed
function

Narrowband transformed
function

Samples
(pixels)

Display

Display

“Real world”
continuous function

17

Computer Graphics

Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Transformation

Filtering

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband
function

Reconstructed
function

Transformed
function

Narrowband transformed
function

Samples
(pixels)

Display

Narrowband
function

18

Computer Graphics

Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Transformation

Filtering

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband
function

Reconstructed
function

Transformed
function

Narrowband transformed
function

Samples
(pixels)

Display

Samples
(pixels)

19

Computer Graphics

Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband
function

Reconstructed
function

Reconstructed
function

Transformation

Filtering

Sampling

Reconstruction

Transformed
function

Narrowband transformed
function

Samples
(pixels)

Display

20

Computer Graphics

Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Transformation

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband
function

Reconstructed
function

Transformed
function

Transformed
function

÷2

Filtering

Sampling

Reconstruction
Narrowband transformed

function

Samples
(pixels)

Display

21

Computer Graphics

Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Filtering

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband
function

Narrowband transformed
function

Narrowband transformed
function

Transformation

Reconstructed
function

Transformed
function Sampling

Reconstruction

Samples
(pixels)

Display

22

Computer Graphics

Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband
function

Samples
(pixels)

Display

Samples
(pixels)

Filtering

Narrowband transformed
function

Transformation

Reconstructed
function

Transformed
function

23

Computer Graphics

Aliasing

 Image Processing; a series of operations

Sampling

Reconstruction

Sampling

Reconstruction

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband
function

Samples
(pixels)

Display

Displayed reconstructed
function

Filtering

Narrowband transformed
function

Transformation

Reconstructed
function

Transformed
function

24

Computer Graphics

Aliasing

 Image Processing; a series of operations

Sampling 1

Reconstruction 1

Sampling 2

Reconstruction 2

Lowpass filtering

Real world
Continuous function

Samples
(pixels)

Narrowband
function

Samples
(pixels)

Display
Screen

Scanner

Camera...

 Sampling 1 – in a device...
 Optional filtering

 May be included in reconstr. 1

 Reconstruction 2 – in a device
(screen!)

Filtering

Narrowband transformed
function

Transformation

Reconstructed
function

Transformed
function

25

Computer Graphics

Aliasing

 The case of computer generated images

Sampling ?

Reconstruction

Lowpass filtering ?

Mathematical
world

Samples
(pixels)

Narrowband
function

Samples
(pixels)

Display
Screen

Realistic rendering
software

...

 Questions arise about low-pass
filtering and the sampling of the
“mathematical” world that we
are representing.

 Difficult to separate these two
operations.

 I will discuss about it later.

26

Computer Graphics

Aliasing

J. Blinn's Corner

27

Computer Graphics

Aliasing

 Convolution

 f∗g t = ∫
−∞

∞

f t− g d 

28

Computer Graphics

Aliasing

 Reconstruction
 From samples
 Convolution with a certain function

 Linear, bicubic, Gaussian, etc...
 Interpolates the signal where it no longer exists (between samples)
 Back to a continuous signal ...

29

Computer Graphics

Aliasing

 Reconstruction with a linear filter (« hat »)
 Each sample is "multiplied" by the hat function and the

sum constitutes the reconstructed function

*

30

Computer Graphics

Aliasing

 Reconstruction with a Gaussian filter
 Each sample is "multiplied" by the Gaussian function

and the sum constitutes the reconstructed function

*

31

Computer Graphics

Aliasing

 Reconstruction with sinc
 Convolution with a cardinal sine that has an infinite

support : provided that the original signal meets the
Shannon condition, the exact original signal is
reconstructed !

*

sinc x=
sin x
 x

32

Computer Graphics

Aliasing

 The sinc has an infinite support
 In theory, the computing effort is infinite ...
 In practice, the function is truncated.

 This is the famous “Lanczos” filter.

L(x)={
sinc (x) sinc (x /a) if −a< x<a , x≠0
1 if x=0
0 otherwise

a=2

a=3*Cornelius Lanczos, Hungarian mathematician (1893-1974)

33

Computer Graphics

Aliasing

Bicubic interpolation

Nearest
neighbor
interpolation

Bilinear interpolation

34

Computer Graphics

Aliasing

 Transformation
 Change the position of the image / or the samples

 Rotation
 Scaling
 Etc...

 In cases where the targeted sample density is lower,
filtering with a low-pass filter is needed before
resampling

 In cases where the targeted sample density is
identical or finer, a simple resampling after
reconstruction is sufficient

35

Computer Graphics

Aliasing

 Example with a rotation

u

v

x

y

f

36

Computer Graphics

Aliasing

 Direct mapping – bad idea

u

v

x

y

f

Several source samples
in the destination pixel

No source sample
in the destination pixel

Loop on source image...
but difficult to “reconstruct” the target
image (it is an inverse problem)

37

Computer Graphics

Aliasing

 Inverse mapping

u

v

x

y

f-1

Loop on pixels of the target
image ...

- Resampling is unavoidable
- A reconstruction of the source image is used here

38

Computer Graphics

Aliasing

 The reconstruction is crucial to the quality of the
target image
 Nearest neighbour – lots of aliasing
 Bilinear – not much aliasing but blurred image (loss of

details)
 Bicubic and « Lanczos » - better (but more

computationally expensive)

39

Computer Graphics

Aliasing

 Nearest neighboor :

u

v

40

Computer Graphics

Aliasing

 Serie of 36 rotations of 5° → 180° followed by a
mirroring (without any loss)
 Original images magnified 10x

41

Computer Graphics

Aliasing

 « Nearest neighbour » filter

42

Computer Graphics

Aliasing

 Bilinear :

u

v

f u ,v = f 0,01−u1−v 
 f 1,0u 1−v  f 0,11−uv

 f 1,1uv

f 0,1

f 1,0f 0,0

f 1,1

u=
u−umin

umax−umin

v=
v−v min

vmax−vmin

f u ,v 

43

Computer Graphics

Aliasing

 « Bilinear » filter

44

Computer Graphics

Aliasing

 Bicubic :

u

v

f −1,2

f 2,−1f −1,−1

f 2,2

v=
v−v min

vmax−vmin

f u ,v 

f 0 ,2 f 1,2

f 1 ,1

f u ,v =a00a01va02v
2
a03v

3

a10 ua11uva12 uv
2
a13uv

3

a20u
2
a21u

2
va22u

2
v

2
a23u

2
v

3

a30 u
3
a31 u

3
va32 u

3
v

2
a33u

3
v

3

u=
u−umin

umax−umin

f 0 , 0

45

Computer Graphics

double bicubicInterpolate (double[][] p, double u, double v)
{
double a00 = p[1][1];
double a01 = p[1][2] - p[1][1]/2 - p[1][0]/3 - p[1][3]/6;
double a02 = p[1][0]/2 - p[1][1] + p[1][2]/2;
double a03 = p[1][1]/2 - p[1][0]/6 - p[1][2]/2 + p[1][3]/6;
double a10 = p[2][1] - p[1][1]/2 - p[0][1]/3 - p[3][1]/6;
double a11 = p[0][0]/9 + p[0][1]/6 - p[0][2]/3 + p[0][3]/18 + p[1][0]/6 + p[1][1]/4 - p[1][2]/2 + p[1][3]/12 -
p[2][0]/3 - p[2][1]/2 + p[2][2] - p[2][3]/6 + p[3][0]/18 + p[3][1]/12 - p[3][2]/6 + p[3][3]/36;
double a12 = p[0][1]/3 - p[0][0]/6 - p[0][2]/6 - p[1][0]/4 + p[1][1]/2 - p[1][2]/4 + p[2][0]/2 - p[2][1] + p[2]
[2]/2 - p[3][0]/12 + p[3][1]/6 - p[3][2]/12;
double a13 = p[0][0]/18 - p[0][1]/6 + p[0][2]/6 - p[0][3]/18 + p[1][0]/12 - p[1][1]/4 + p[1][2]/4 - p[1][3]/12 -
p[2][0]/6 + p[2][1]/2 - p[2][2]/2 + p[2][3]/6 + p[3][0]/36 - p[3][1]/12 + p[3][2]/12 - p[3][3]/36;
double a20 = p[0][1]/2 - p[1][1] + p[2][1]/2;
double a21 = p[0][2]/2 - p[0][1]/4 - p[0][0]/6 - p[0][3]/12 + p[1][0]/3 + p[1][1]/2 - p[1][2] + p[1][3]/6 - p[2]
[0]/6 - p[2][1]/4 + p[2][2]/2 - p[2][3]/12;
double a22 = p[0][0]/4 - p[0][1]/2 + p[0][2]/4 - p[1][0]/2 + p[1][1] - p[1][2]/2 + p[2][0]/4 - p[2][1]/2 + p[2]
[2]/4;
double a23 = p[0][1]/4 - p[0][0]/12 - p[0][2]/4 + p[0][3]/12 + p[1][0]/6 - p[1][1]/2 + p[1][2]/2 - p[1][3]/6 -
p[2][0]/12 + p[2][1]/4 - p[2][2]/4 + p[2][3]/12;
double a30 = p[1][1]/2 - p[0][1]/6 - p[2][1]/2 + p[3][1]/6;
double a31 = p[0][0]/18 + p[0][1]/12 - p[0][2]/6 + p[0][3]/36 - p[1][0]/6 - p[1][1]/4 + p[1][2]/2 - p[1][3]/12 +
p[2][0]/6 + p[2][1]/4 - p[2][2]/2 + p[2][3]/12 - p[3][0]/18 - p[3][1]/12 + p[3][2]/6 - p[3][3]/36;
double a32 = p[0][1]/6 - p[0][0]/12 - p[0][2]/12 + p[1][0]/4 - p[1][1]/2 + p[1][2]/4 - p[2][0]/4 + p[2][1]/2 -
p[2][2]/4 + p[3][0]/12 - p[3][1]/6 + p[3][2]/12;
double a33 = p[0][0]/36 - p[0][1]/12 + p[0][2]/12 - p[0][3]/36 - p[1][0]/12 + p[1][1]/4 - p[1][2]/4 + p[1][3]/12
+ p[2][0]/12 - p[2][1]/4 + p[2][2]/4 - p[2][3]/12 - p[3][0]/36 + p[3][1]/12 - p[3][2]/12 + p[3][3]/36;

double u2 = u * u; double u3 = u2 * u; double v2 = v * v; double v3 = v2 * v;
return a00 + a01 * v + a02 * v2 + a03 * v3 +
 a10 * u + a11 * u * v + a12 * u * v2 + a13 * u * v3 +
 a20 * u2 + a21 * u2 * v + a22 * u2 * v2 + a23 * u2 * v3 +
 a30 * u3 + a31 * u3 * v + a32 * u3 * v2 + a33 * u3 * v3;
}

Aliasing

Here , p[i][j]=f(i-1, j-1)

46

Computer Graphics

Aliasing

 « Bicubic » filter

47

Computer Graphics

Aliasing

 Lanczos :

u

v

48

Computer Graphics

Aliasing

 « Lanczos » filter

49

Computer Graphics

Aliasing

50

Computer Graphics

Aliasing

Without antialiasing
nearest neighbour

Antialiasing
by oversampling 4
and simple average

Antialiasing by
Lanczos filtering
(ideal but costly)

 Another example

51

Computer Graphics

Aliasing

 Case of downsampling

u

v

The input data must be filtered with a low pass filter, that is matched
with the resolution of the destination image

52

Computer Graphics

Image storage

53

Computer Graphics

Image storage

 Idea : images are not random
 We can take advantage of the structure to store images
 Two approaches

 Vectorised images
 Discretized images

 Compression without losses
 Compression with controled losses

jpg

tiff gif png

svg

bmp
exr

cin

54

Computer Graphics

Image storage

 TIFF : universal format but sometimes partially implemented
 JPG : limited to 8bits/channel, DCT compression with losses

(WWW)
 PNG : open format, 1/2/4/8 indexed bits, 8/16 bits/channel ; alpha

channel (transparency), LZW type compression – no patent (WWW)
 GIF : indexed 8 bits, transparency (1 bit), LZW type compression,

possible animation, expired patent (WWW)
 SVG : vector images
 CIN : old format « cineon » 10 bits / channel, used for special

effects. Lossless compression
 EXR : open format Lucasfilm (ILM): 16/32 bits by channel in floating

point, lossless compression
 BMP : old Windows format without compression limited to 8 bits by

channel + transparency

55

Computer Graphics

Image storage

 How to choose ?
 Outline drawing, to be scaled --- vector format
 Images in general, sampled (bitmap) format

56

Computer Graphics

Image storage

 Vector images
 Generally no “geometric” compression
 A typical example : character fonts destined to be

enlarged
 Ideal as a format for line drawings

WMF : windows metafile (exclusively windows)

SVG : Scalable vector graphics (open standard)

+ proprietary formats : coreldraw, adobe illustrator...

DXF : for technical drawings (Autocad)

57

Computer Graphics

Image storage

 Bitmap images
 Uncompressed storage

 BMP (old), TIFF (1/8/16 bits/c, floating point) , PNG (8,16 bits/c,
alpha channel,1,2,4,8 bits indexed col.), PNG (indexed colors +
alpha channel), EXR (floating point 16,32 bits/channel)

 Lossless compression
 TIFF, PNG, GIF, EXR

 Lossy compression
 TIFF, JPG(8 bits), JPEG2000 (improved JPG but not used due to

patents !)

58

Computer Graphics

Image storage

 For images with few colours, and/or with sharp
contrasts, never use JPG.

PNG
1176 bytes

JPG
3225 bytes

59

Computer Graphics

Image storage

 Pictures or images with continuous tones are
adapted to JPG.

24 bit JPG : 85Kbytes

60

Computer Graphics

Image storage

 Pictures or images with continuous tones are
adapted to JPG.

24 bit PNG / lossless : 646Kbytes

61

Computer Graphics

Image storage

 Pictures or images with continuous tones are
adapted to JPG.

 8 bit PNG (256 indexed colours) : 227 Kbytes

62

Computer Graphics

Image storage

 Pictures or images with continuous tones are
adapted to JPG.

4 bit - PNG (16 indexed colours) : 108 Kbytes

63

Computer Graphics

Image storage

 High contrast images (HDR) or images that will
be manipulated (brightness/contrast ...)
 16 bit PNG
 16 bit TIFF
 EXR

 Images for the WWW or for display on desktop
screen
 GIF, 8 bit PNG, JPG

 If space is not a problem, always prefer lossless
compression and a high nb of bit/channel.

64

Computer Graphics

Image storage

There is no universal image format !

65

Computer Graphics

Perspective and transformation matrices

66

Computer Graphics

Perspective

 « Classical » projections

Plane projections

Parallel Perspective

Orthogonal Oblique 1vanishing
point

3 vanishing
points

Multiview Axonometric

2 vanishing
points

67

Computer Graphics

Perspective
Perspective (central) projection

Parallel projection

Axonometric
Orthogonal

Oblique projection

68

Computer Graphics

Perspective

 Vanishing points in perspective projection

69

Computer Graphics

Perspective

70

Computer Graphics

Perspective

 The perspective is a fairly accurate
representation of what the eye sees
 Based on central projection
 In first approximation, the eye (or a camera) is made

of a lens (the eye's lens), and a projection plane of the
image (retina). The lens may be considered as a point
in what follows.

S
A

A'

P f

71

Computer Graphics

Perspective

 Equivalent configuration used in computer
graphics

S
AA'

f
P

72

Computer Graphics

Perspective

 Parallel projection is the limiting case where f
tends to infinity.

S AA'

f P

73

Computer Graphics

Geometric transformations

74

Computer Graphics

Transformation matrices

 Geometric transformations
 Two goals

 Get from 3D coordinates objects a projection on the screen plane
(coordinates 2D + depth details)

 From elementary objects, they can be placed anywhere in the
volume, optionally modified by operations such as shearing or
scaling.

75

Computer Graphics

Affine transformations

 Case of linear transformations
 Affine transformations

P ≡A⋅Pu , u∈ℝ3

76

Computer Graphics

identity : u = 0, A = I , I is the identity
matrice,

translation :
u is the translation vector, A = I,

scaling
u = 0, A is a diagonal matrice,
whose terms define the scales
along the axes,

rotation :
u = 0, A is the rotation matrice,

Some affine transformations

u=0 ; A=[
cos −sin  0
sin  cos 0

0 0 1]

u=0 ; A=[
a 0 0
0 b 0
0 0 c]

u=[
a
b
c] ; A=[

1 0 0
0 1 0
0 0 1]

u=0 ; A=[
1 0 0
0 1 0
0 0 1]

77

Computer Graphics

shearing :
where a, b, c are the 3shearing
coefficients.

u=0 ; A=[
1 a b
0 1 c
0 0 1]

Some affine transformations

If the matrice A is orthogonal : AT = A-1

Important particular
case :

then this transformation preserves angles and lengths.

78

Computer Graphics

 Additive treatment for the translation

The treatment is not the same for all operations ...

Matrix treatment

P1=S⋅P0

P1=R⋅P0

P1=C⋅P0

P1=P0t

Multiplicative treatment

79

Computer Graphics

Homogeneous coordinates

 In order to make the identical treatment of the
translation, we add one coordinate, set to 1 for
now

 The additional coordinate will be used for the
perspective projection in the sequel

[
1 0 0 r
0 1 0 s
0 0 1 t
0 0 0 1

]⋅[
x
y
z
1
]=[

xr
ys
zt

1
]

TranslationOther operations

80

Computer Graphics

- translation :

- scaling :

Transformation matrices

D t =[
1 0 0 u
0 1 0 v
0 0 1 w
0 0 0 1

] ; t=[
u
v
w
1
]

S p , q , r =[
p 0 0 0
0 q 0 0
0 0 r 0
0 0 0 1

]

81

Computer Graphics

- rotation around x-axis :

- rotation around z-axis :

- rotation around y-axis :

R z =[
cos −sin  0 0
sin  cos 0 0

0 0 1 0
0 0 0 1

]
R x =[

1 0 0 0
0 cos −sin  0
0 sin  cos 0
0 0 0 1

]
R y =[

cos 0 sin  0
0 1 0 0

−sin  0 cos 0
0 0 0 1

]

Transformation matrices

82

Computer Graphics

- shearing (general case) Ca , b , c=[
1 a b 0
0 1 c 0
0 0 1 0
0 0 0 1

]
Transformation matrices

 One can combine these transformation matrices
by simple multiplication
 One should respect the ordering (not commutative !)

Gn=Gn−1⋯G2⋅G1

83

Computer Graphics

Transformation matrices

 In particular, if one expresses an additional
transformation T:
 Relative to the origin of the reference (O)

 Relative to the object (transform of O by G
n-1

)

 Relative to an arbitrary point A

Gn=T⋅Gn−1

Gn=Gn−1⋅T

Gn=D x A , y A , zA⋅T⋅D−x A ,− yA ,− z A⋅Gn−1

84

Computer Graphics

Transformation matrices

 Change of reference (for parallel projections)
 3D global reference to reference 2D screen
 12 parameters in the transformation
 We can specify the transformation uniquely by 4

points (forming a tetrahedron) and their transforms

85

Computer Graphics

0

1

2

3
3D

2D (or 3D)

P 0=[
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

]

Transformation matrices

P 1=[
x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

1 1 1 1
]

T=P1⋅P0
−1

P 1=T⋅P0

z x

y

y'

x'z'

O

O'

86

Computer Graphics

Transformation matrices

This matrix is used to project the coordinates in an arbitrary
 axis system

P 0=[
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1

] P 0
−1
=[
−1 −1 −1 1
1 0 0 0
0 1 0 0
0 0 1 0

] P 1=[
x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

1 1 1 1
]

T=[
x1−x0 x2−x0 x3−x0 x0

y1− y0 y2− y0 y3− y0 y0

z1−z0 z2−z0 z3−z0 z0

0 0 0 1
]

87

Computer Graphics

Transformation matrices

 Using the transformations that we have just seen
, we can :

- Transform space coordinates (x, y, z) coordinates to
screen coordinates (x ', y', z '= depth), expressing the
position in space of the view associated with the
screen

- Consider a scale factor to adjust the size of the
virtual screen space and switch from (x', y') to (i, j)
which is the geometrical position on the screen

 The third coordinate (depth z') will be used to compute
hidden faces.

88

Computer Graphics

Transformation matrices

 For points where the 4th (homogenous)
coordinate w is different from one
 We consider that all points situated along a line going

through the origin are equivalent
 This corresponds to a central projection on the

hyperplane w = 1; the following points are
(geomtrically) equivalent:

 If w = 0, it means a vector in homogeneous
coordinates

 There is a way to distinguish vectors and points !

[wx , wy ,wz , w]⇔[x , y , z ,1]

[x , y , z ,0]

89

Computer Graphics

Transformation matrices

 Perspective transformation
 We will consider a special case that does not betray

the generality of the approach
 P is at the origin O of the reference frame
 The screen is a plane of normal n=(0,0,1) (perpendicular to z),

containing P
 We look towards the positive z.

AA'

d

z

y x

P(0,0,0)

S(0,0,-d)

Q(x,y,z)

Q'(x',y',z')

x '

x
=

y '

y
=

d
d z 

z'
=0

90

Computer Graphics

Transformation matrices

 Screen coordinates in function of space
coordinates

 We will change that so that the 3rd coordinate is going
through the same scaling

z'
=0

x'
=

x

1 z
d

y '
=

y

1 z
d

z'
=

z

1 z
d

x'
=

x

1 z
d

y '
=

y

1 z
d

91

Computer Graphics

Transformation matrices

 The three Cartesian coordinates

 may be expressed differently in the homogeneous
space (via the equivalence relation) :

x'
=

x

1 z
d

y '
=

y

1 z
d

z'
=

z

1 z
d


x

1
z
d

, y

1
z
d

, z

1
z
d

,1≡x , y , z ,1 z
d


92

Computer Graphics

Transformation matrices

 We can then write the transformation as a linear
transformation (in fact, a shear) in the
homogeneous space

 The following operations lead to the desired image :
 First, the 4D “shearing”
 Then, a perspective projection into 3D space, it is called the

perspective division - it is a non-linear transformation
 Then an orthogonal projection on the screen for which z = constant


x
y
z

1
z
d
=

1 0 0 0
0 1 0 0
0 0 1 0

0 0
1
d

1 ⋅
x
y
z
1


93

Computer Graphics

Transformation matrices

 Field of view and effective construction of
transformation matrices
 Canonical view field



 Screen : consists in pixels, centred at the origin, in the
plane

 Transformation of the canonical field to the screen coordinates

x c , yc , zc∈[−1,1]3

n x , n y

x

y

xz 
x p

y p

z p

1
=

nx

2
0 0

n x−1
2

0
ny

2
0

n y−1

2
0 0 1 0
0 0 0 1




M s

⋅
xc

yc

zc

1


sight

x p , y p∈[−0.5 , n x−0.5]×[−0.5 , n y−0.5]

NB : If y
c
 is reversed, it must be taken into account ...

94

Computer Graphics

(l,b,f)

(-1,-1,-1)

Transformation matrices

 Orthographic projection
 We will match a specified volume with the canonical

volume
 This volume is aligned with the canonical volume but does not have

the same center, nor the same dimensions

x d , y d , zd ∈[l , r]×[b ,t]×[f , n]

(1,1,1)

(r,t,n)

95

Computer Graphics

Transformation matrices

 The process resorts to a translation followed by a
dilation.


xc

yc

zc

1
=

2
r−l

0 0 0

0
2

t−b
0 0

0 0
2

n− f
0

0 0 0 1
⋅

1 0 0 −
rl

2

0 1 0 −
bt

2

0 0 1 −
n f

2
0 0 0 1




M c

⋅
xd

yd

z d

1


fn b

t

96

Computer Graphics

Transformation matrices

 Viewpoints with an arbitrary position and
orientation
 One would like to watch in an arbitrary direction and

from any point
 The position of the eye (o), the view direction (r) and “noon” -local

vertical line for the observer- (m) are defined
 An orthonormal (o, u, v, w) frame is constructed from the data.

x

y

xz
r

m
o

w v

u

w=−
r
∥r∥

u=−
m×w
∥m×w∥

v=w×u

97

Computer Graphics

Transformation matrices

 The alignment of the space coordinates with
those of the viewer is done with two changes
 Translation bringing the coordinates of the eye to the

origin
 Rotation about the axes to align them with the global

axes


xd

y d

zd

1
=

xu yu zu 0
xv yv z v 0
xw yw zw 0
0 0 0 1

⋅
1 0 0 −x o

0 1 0 −yo

0 0 1 −zo

0 0 0 1



M v

⋅
xe

ye

ze

1


98

Computer Graphics

Transformation matrices

 Perspective transformation

o
g

z

d=n

y

P
erspective plane

y
s

y s=
d
z

y

99

Computer Graphics

Transformation matrices

n f

 Here we want to keep the 'z' value of plane f and keep
(x, y, z) on plane n (projection plane or perspective
plane)

100

Computer Graphics

Transformation matrices

 To use homogeneous coordinates,
 All three components must be divided by the same

value
 Recall what we saw before :

 Compared to this matrix, it has a displacement to bring the eye to
(0,0,0) , thus keeping z=n unchanged

 And a small change to keep the points z = f unchanged as well


x
y
z

1
z
d
=

1 0 0 0
0 1 0 0
0 0 1 0

0 0
1
d

1 ⋅
x
y
z
1


101

Computer Graphics

Transformation matrices

 Keep z = f and z = n unchanged


x

n
z

y
n
z

 z
n
z

1
≡

1 0 0 0
0 1 0 0
0 0  

0 0
1
n

0 ⋅
x
y
z
1
 {

n
n

n
=n

n
 f 

f
= f
⇒ {=

n f
n

=− f

102

Computer Graphics

Transformation matrices

 Perspective matrix

 The matrix can be multiplied by an arbitrary constant
(because of the homogeneous coordinates).
Multiplying by n yields :


xe

ye

ze

1
≡

1 0 0 0
0 1 0 0

0 0 n f
n

− f

0 0 1
n

0 ⋅
x
y
z
1



xe

ye

ze

1
≡

n 0 0 0
0 n 0 0
0 0 n f − f n
0 0 1 0




M p

⋅
x
y
z
1


103

Computer Graphics

Transformation matrices

 The perspective matrix that we have just defined
suppose one looks in the direction of the
negative z
 We must therefore apply it after the change of point of

view !
 The complete chain of transformations is therefore :

M=M s⋅M c⋅M p⋅M v

104

Computer Graphics

Transformation matrices

 In particular, the matrix

 is called perspective projection matrix, and allows to
reach from the real space the canonical volume [-1,1]3

M proj _ persp=M c⋅M p=
2 n
r−l

0
lr
l−r

0

0
2 n

t−b
bt
b−t

0

0 0
f n
n− f

2 f n
f −n

0 0 1 0


z=−∣ f∣ zc=−1

z=−∣n∣ zc=1
M=M s⋅M proj _ persp⋅M v

Depends on the hardware Depends on the type of projection Depends on your point of view

105

Computer Graphics

Transformation matrices

 OpenGL...

"Mathematical" convention used in this course

OpenGL convention

106

Computer Graphics

Transformation matrices

 By multiplying by -1 and substitute

one obtains :


2 n

r−l
0 lr

l−r
0

0
2 n

t−b
bt
b−t

0

0 0
f n
n− f

2 f n
f −n

0 0 1 0
≡
−2 n
r−l

0 rl
r−l

0

0
−2 n
t−b

tb
t−b

0

0 0
− f −n
n− f

2 f n
n− f

0 0 −1 0
≡

2∣n∣
r−l

0
rl
r−l

0

0
2∣n∣
t−b

tb
t−b

0

0 0
∣ f ∣∣n∣
∣ f ∣−∣n∣

2∣ f ∣∣n∣
∣ f ∣−∣n∣

0 0 −1 0


f n0 et −n=∣n∣ − f =∣ f ∣ nf =∣n∣∣ f ∣ n− f =∣ f ∣−∣n∣

107

Computer Graphics

Transformation matrices

 Conventional OpenGL perspective projection
matrix


2∣n∣
r−l

0
rl
r−l

0

0
2∣n∣
t−b

tb
t−b

0

0 0
∣ f ∣∣n∣
∣ f ∣−∣n∣

2∣ f ∣∣n∣
∣ f ∣−∣n∣

0 0 −1 0
 

2∣n∣
r−l

0
rl
r−l

0

0
2∣n∣
t−b

tb
t−b

0

0 0
∣ f ∣∣n∣
∣n∣−∣ f ∣

2∣ f ∣∣n∣
∣n∣−∣ f ∣

0 0 −1 0



M proj _ persp _ OpenGL

z=−∣ f∣ zc=1

z=−∣n∣ zc=−1

108

Computer Graphics

Transformation matrices

 Idem without perspective transformation


2

r−l
0 0 0

0
2

t−b
0 0

0 0
2

n− f
0

0 0 0 1
⋅

1 0 0 −
rl

2

0 1 0 −
bt

2

0 0 1 −
n f

2
0 0 0 1




M c

=
2

r−l
0 0

lr
l−r

0
2

t−b
0

bt
b−t

0 0
2

n− f
f n
f −n

0 0 0 1



M proj _ orth

109

Computer Graphics

Transformation matrices

 OpenGL orthographic projection matrix

 In all cases :


2

r−l
0 0

lr
l−r

0
2

t−b
0

bt
b−t

0 0
2

n− f
f n
f −n

0 0 0 1



M proj _ orth


2

r−l
0 0

lr
l−r

0
2

t−b
0

bt
b−t

0 0
−2
∣ f ∣−∣n∣

∣ f ∣∣n∣
∣ f ∣−∣n∣

0 0 0 1



M proj _ orth _ OpenGL

M=M s⋅M proj⋅M v

110

Computer Graphics

Transformation matrices

 Usual simplifications
 In general, one looks at the center of the volume

 We also want square pixels

[l , r]×[b , t]×[f , n]

r=−l=
w
2

t=−b=
h
2

w
h
=

n x

n y


1
w

0 0 0

0
n x

w ny

0 0

0 0
−2
∣ f ∣−∣n∣

∣ f ∣∣n∣
∣ f ∣−∣n∣

0 0 0 1




M proj _ orth _ OpenGL


∣n∣
w

0 0 0

0
∣n∣nx

w n y

0 0

0 0
∣ f ∣∣n∣
∣n∣−∣ f ∣

2∣ f ∣∣n∣
∣n∣−∣ f ∣

0 0 −1 0




M proj _ persp _OpenGL

111

Computer Graphics

Transformation matrices

 One can also specify the field of view (obviously for
perspective projections only)

tan =
w
∣n∣
⇒w=∣n∣tan


1

tan
0 0 0

0
nx

n y tan 
0 0

0 0
∣ f ∣∣n∣
∣n∣−∣ f ∣

2∣ f ∣∣n∣
∣n∣−∣ f ∣

0 0 −1 0




M proj _ persp _ OpenGL

112

Computer Graphics

Transformation matrices

 Exercise
 Compute the transformation matrix for an observer located at (x =

10, y = 10, z = 10) facing the direction (-1, -1, -1). A vector from the
vertical plane is the vector (0,1,0). The screen is 1000 by 1000
pixels.

 Angle of view : 45° (tan 45 = 1)
 Plane position n and f : z=10 and z=20 respectively

w=−
g
∥g∥ u=−

t×w
∥t×w∥

v=w×u


xu yu zu 0
xv yv zv 0
xw yw z w 0
0 0 0 1

⋅
1 0 0 −xo

0 1 0 − yo

0 0 1 −z o

0 0 0 1



M v


2∣n∣
r−l

0
rl
r−l

0

0
2∣n∣
t−b

tb
t−b

0

0 0
∣ f ∣∣n∣
∣n∣−∣ f ∣

2∣ f ∣∣n∣
∣n∣−∣ f ∣

0 0 −1 0



M proj _ persp _ OpenGL

(
n x

2
0 0

n x−1
2

0
n y

2
0

n y−1

2
0 0 1 0
0 0 0 1

)
⏟

M s

113

Computer Graphics

Transformation matrices

 How to select (point at an object with the mouse
and pick the object)
 Using the reverse transformation
 Need to know for each pixel, the geometric primitive

recently drawn
 We'll see how later...

114

Computer Graphics

Two paradigms for synthetic image
generation

115

Computer Graphics

2 paradigms...

 A projection of the objects on the plane of the
screen
 Purely geometrical aspects

 Using transformation matrices
 Need for hidden line removal algorithm
 « Clipping » and « culling » techniques

 Allows to draw only visible entities (and minimizing side effects)

 Colouring / shadowing
 Lighting
 Textures
 Laws of reflection

 Possibility of real-time graphics (e.g. videogames, ...)
 OpenGL type implementation (in hardware)

116

Computer Graphics

2 paradigms...

 Projective “à la OpenGL” paradigm
 Start from the objects and their coordinates in space
 Determine at each point or every facet, lighting

features, textures, etc ...
 Project into the coordinate space of the screen

 Transformation matrices seen before

 Draw the object in discrete form
 Raster algorithm - (!) aliasing
 hidden faces !
 The colour of each pixel is determined by the information calculated

above (previously interpolated or computed on-the-fly)

117

Computer Graphics

2 paradigms...

 Ray-tracing paradigm
 Geometric aspects

 We start form pixels to meet objects
 Finding the intersection of a ray and objects (usually triangulated)

 Problem of the hidden faces : automatically solved !
 Culling is useful (to avoid unnecessary searches)

 Colouring
 Realistic reflection laws
 Realistic lighting law
 Complex textures

 Relatively slow but higher fidelity
 Easy introduction of new light/texture models

118

Computer Graphics

2 paradigms...

 Ray-tracing paradigm
 Start from screen pixels
 Draw a line through the eye and that pixel and

calculate the intersection with the first object
encountered online
 Particular case if the surface is a dielectric or metal (smooth metal or

glass, liquid etc ...) : the ray is reflected, or deflected or both

 Determine the color of the object at this point
 Use of physical or empirical laws
 Consider the light - and shadows

 Give the determined pixel color
 (!) again, problems of potential aliasing !

119

Computer Graphics

2 paradigms...

 Common issues for both techniques
 Laws of light-surface interaction, reflection, types of

surfaces
 Textures
 Geometrical modelling
 Meshes
 Colour theory
 Aliasing

120

Computer Graphics

2 paradigms...

 Specific topics to ray-tracing
 Radiosity equation
 Calculation of shadows
 Refraction, reflection
 Use of Computational Geometry to lower the

computation costs

121

Computer Graphics

2 paradigms...

 Specific issues to the projective approach
 Visibility problems (clipping and hidden faces)
 Raster algorithms

122

Computer Graphics

2 paradigms...

 There are hybrid approaches
 Allows to combine the advantages of both paradigms

 Speed (projective approach)
 Fidelity (ray tracing approach)
 They are more or less close to a very versatile implementation in

software of the more rigid OpenGL stack.

 E.g. Pixar Renderman.

123

Computer Graphics

Project

124

Computer Graphics

Project

 Available topics
 A) Homemade Ray Tracer

 Upgrade an existing ray-tracing program (which I provide)
 Programming & Implementation

 B) Topic of your choice
 If you want to work on a topic that interests you and is within the

scope of the course (I have to validate early enough !)

125

Computer Graphics

Project

 Project guidlines
 Individual project
 Deliverables

 (A) Homemade Ray Tracer
 a) “Specifications” : definition of what you will do (+ who) , planning ...
 b) Final report detailing the philosophy of your contribution (why and

how) + code + results and critical analysis + detailed personal
contributions if you are two

 c) Small presentation to show the results

126

Computer Graphics

Project

 (B) Own topic
 a) Definition of the topic (originality, interest, context ...)
 b) “Specifications” : definition of what you will do (+ who) , planning ...
 c) Final report detailing the philosophy of your contribution (why and

how) + code + results and critical analysis + detailed personal
contributions if you are two

 d) Small presentation to show the results

 Physical limits of the documents
 Specifications : 1-2 A4 pages
 Final report : max 15 A4 pages
 Definition of the subject (B) : 1 A4 page

127

Computer Graphics

Project

 Deadlines
 Choice of subjects : Feb 27th

 In the case C) definition of the subject : Feb 27th

 Specifications and planning : March 13th
 Submission of reports : before June 1st
 Relative weight in the final mark : TBD

128

Computer Graphics

Project

 Homemade Ray-tracer
 Canvas available on the course's website

http://www.cgeo.ulg.ac.be/infographie

 Developed in portable C ++ under Linux
 Uses OpenGL and FLTK

 I do not want you develop a significant GUI for what you're doing
(takes too long) - simply implement models of reflection, shadows,
geometry etc ... and test this directly in the code (in the main()
function for example). GUI might be an option when everything else
works.

 There are (very) few comments ...
 You are allowed to modify the existing code...

129

Computer Graphics

Project

 Subjects related to the HomeMade RayTracer

1 – Implement subsurface scattering
 Rendering of semi-transparent objects (e.g. skin)

2 – Interfacing with an existing solid modeler
 CATIA files, Solidworks, etc.

3 – Metropolis algorithm
 Unbiased physical rendering

4 – Efficient ray intersection with smooth CAD
surfaces
 bézier/NURBS surfaces and the like

All – Gather all !
 Keep in mind that you work together...part of the evaluation depends

on the integration of all developments in the same source tree.

