
1

Computer Graphics

Course outline

 Introduction
 Images and display techniques

 Bases
 Gamma correction
 Aliasing and techniques to remedy
 Storage

2

Computer Graphics

Course outline

 3D Perspective & 2D / 3D transformations
 Go from a 3D space to a 2D display device

 Two paradigms for image synthesis
 Representation of curves and surfaces

 Splines & co.
 Meshes

 Realistic rendering by ray tracing
 Concepts and theoretical bases

3

Computer Graphics

Representation of curves and surfaces

4

Computer Graphics

 Curves
 Interpolation

 Cubic Splines

 Approximation
 Bézier Curves
 B-spline Curves

 Surfaces
 Interpolation

 Coons Patches

 Approximation
 B-splines Surfaces
 Subdivision Surfaces

5

Computer Graphics

 Two useful references...

JC.Léon, Modélisation et construction de surfaces
pour la CFAO, Hermes, 1991

L. Piegl, W. Tiller, The NURBS Book, Second Edition,
Springer , 1996

6

Computer Graphics

Cubic Splines

7

Computer Graphics

Splines

 Goal :
 Interpolate points (control points)

 Go through points (interpolation ≠ approximation)

 Ensure a certain regularity to the curve
 Simple (easy) to compute

8

Computer Graphics

Splines

 Let start with the idea that we have many control
points

 Lagrange interpolation ?
 This corresponds to a unique polynomial interpolating every control

points (d+1)

 C
∞

 Continuity

P u=∑
i=0

d

Pi Li
d
u 

9

Computer Graphics

Lagrange Interpolation
21 CP
All on a circle, with a slight perturbation

Splines

10

Computer Graphics

Splines

 Motivation
Let us imagine that we have many (100's of)
control points

 But we don't want a Lagrange interpolation !
 We should stay with a low order scheme but conserve

enough freedom to pass through every point
 Curve defined by pieces ... and of low order (1)

11

Computer Graphics

Splines

 We are going to build a low order interpolation for
each knot interval, such that we can impose
slopes at the knots.

u=u
i+1

u=u
i

P=P
i+1

P=P
i

P'=P'
i

P'=P'
i+1

12

Computer Graphics

Splines

 In each range [i,i+1] , we want to have an
independent polynomial

 We have 4 parameters : position at each knot
and associated tangents.

 The basis must have 4 degrees of freedom, thus be of
order 3 in the case of polynomials.

x [i]u =A[i]0A[i]1 uA[i]2 u2
A[i]3 u3 , u∈[ui , ui1]

P ui=P i ≡ {xui=xi

y ui= y i

13

Computer Graphics

Splines

 First, every interval has a unit length i.e.

 Then we ensure identical intervals [0...1] between
each interpolation point :

 On each interval i , we thus have the following
relation:

ui1−ui=1

u=
u−ui

u i1−ui

=u−ui

x[i](ū)=a[i]0+a[i]1 ū+a[i]2 ū2
+a[i] 3 ū3 , ū∈[0,1]

d u
du

=1

14

Computer Graphics

Splines

P=P
i+1

P=P
i

P'=P'
i

P'=P'
i+1

u=0

u=1

15

Computer Graphics

Splines

 We pass through both control points:

 We impose both slopes :

 At the end :

P u0=0=P i ⇔a[i]0a[i]1 u0a[i] 2u0
2
a[i]3 u0

3
=xi

P u1=1=P i1⇔a[i]0a[i]1 u1a[i] 2 u1
2
a[i]3 u1

3
=x i1

P '
u0=0=P 'i ⇔ a[i]12a[i] 2 u03a[i]3 u0

2
=x i

'

P '
u1=1=P 'i1 ⇔a[i]12a [i] 2 u13a [i]3 u1

2
=x i1

'

{
a[i]0=xi

a[i]1=x i
'

a[i] 2=3 xi1−x i−2 xi
'
−x i1

'

a[i]3=2xi−x i1xi
'
x i1

'

16

Computer Graphics

Splines

 We have continuity
 We have continuity of the derivatives
 But how to choose the slopes ?

 Let the user choose (“artistic” freedom)
 Automatically ...

17

Computer Graphics

Splines

 By finite differences with three points :

 At the boundaries, we use finite differences (asymmetric)

 The result depends on the parametrization !

 Cardinal spline

 c is a « tension » parameter. c=0 gives yields the so called “Catmull-
Rom” spline, c=1 a zigzagging line.

x i
'
=

xi1−xi

2 ui1−ui


xi−xi−1

2 ui−ui−1

x0
'
=

x1−x0

u1−u0

xn−1
'

=
x n−1−xn−2

un−1−un−2

x i
'
=1−c

x i1−xi−1

2
 , 0≤c≤1

x0
'
=(1−c)(x1− x0)

xn−1
'

=(1−c)(xn−1−xn−2)

18

Computer Graphics

Splines

5 points, finite differences by varying the parametrization
[0..1] , [0..2] , [0..5] , [0..10]

Continuity of the curve/parameter
but loss of regularity (and of geometric continuity
in many cases)

19

Computer Graphics

Splines

5 points, Cardinal Spline (Catmull-Rom) c=0

20

Computer Graphics

Splines

Catmull-Rom Splines are widely used in computer
graphics

 Simple to compute, effective
 Local control (price to pay : discontinuous secd derivative)
 Animations with keyframing

 Ensures a fluid motion because of the continuity of the slope

21

Computer Graphics

Splines

5 points, Cardinal Spline c=0.25

22

Computer Graphics

Splines

5 points, Cardinal Spline c=0.5

23

Computer Graphics

Splines

5 points, Cardinal Spline c=0.75

24

Computer Graphics

Splines

5 points, Cardinal Spline c=1.0

25

Computer Graphics

Splines

 We can impose the continuity of second derivatives...
 On a curve with n points, we have n extra relations to impose
 We may impose the continuity of the second derivative only on the n-2

interior knots

What about the 2 points on the boundary ?
 Impose a vanishing second derivative.

We obtain what is called « natural spline »
 We could also impose the slopes (i.e. only n-2 relations remaining)
 Or , impose that the third derivative is zero on the points 1 and n-2

 That means a single polynomial expression for the first two knot
intervals, and the last two.

26

Computer Graphics

Splines

 Natural Spline : mathematical approximation of the
spline historically used in naval construction.

C
. D

eB
oor

27

Computer Graphics

Splines

B
oeing

28

Computer Graphics

Splines

 We impose the continuity of the second derivatives

 We substitute in the “internal” equations

 Finally we obtain :

x[i−1]

''
1=x [i]

''
0⇔ 2a[i−1] 26a[i−1]3=2a[i]2

2 [3x i−x i−1−2 x i−1
'

−x i
'
]6 [2x i−1−x ix i−1

'
x i

'
]

=2 [3 x i1−x i−2 x i
'
−x i1

'
]

x i−1
'

4 x i
'
x i1

'
=3xi1−x i−1

29

Computer Graphics

Splines

 At the boundaries we want

 We have then a linear system with n unknowns :

x [0]

''
0=0⇔ 2a[0] 2=0

x [n−2]

''
1=0⇔ 2a[n−2] 26a[n−2] 3=0

2 x0
'
x1

'
=3 x1−x0

x n−2
'

2 xn−1
'

=3xn−1−xn−2


2 1
1 4 1

1 4 1
⋱

1 4 1
1 2

 
x0

'

x1
'

x2
'

⋮

xn−2
'

xn−1
'

=
3x1−x0

3 x2−x0

3x3−x1

⋮

3xn−1−xn−3

3 xn−1−x n−2


30

Computer Graphics

Splines

 By solving the system, we have :

 , which is substituted in

,to get the polynomial in each portion :

From the global parameter u, we have to find in which portion we are
(the value of i) , then compute right polynomial...


x0

'

x1
'

x2
'

⋮

xn−2
'

xn−1
'

 {
a[i]0=xi

a[i]1=x i
'

a[i] 2=3 xi1−x i−2 xi
'
−x i1

'

a[i]3=2 xi−x i1xi
'
x i1

'

x [i]u=a[i]0a[i]1ua[i]2 u
2
a[i]3 u

3 , 0≤u1

31

Computer Graphics

Splines

5 control points, natural spline

Catmull-Rom spline

32

Computer Graphics

Splines

 An experiment
 We approximate a circle by a number of increasing

points
 Simultaneously , the order of the approximation the

number of pieces increases.

 In all the cases, the curve is C

 C

2

33

Computer Graphics

Splines

3 points, order 3!

34

Computer Graphics

Splines

5 points

35

Computer Graphics

Splines

11 points

36

Computer Graphics

Splines

21 points

37

Computer Graphics

Splines

 Random perturbation
 Each point is moved radially by a value between -0.5

and +0.5 % of the circle's radius

38

Computer Graphics

Splines

3 points, random perturbation 1%

39

Computer Graphics

Splines

5 points, random perturbation 1%

40

Computer Graphics

Splines

11 points, random perturbation 1%

41

Computer Graphics

Splines

21 points, random perturbation 1%

42

Computer Graphics

Splines

 Deterministic perturbation
 Each point is shifted radially depending on its position

by -5 or +5 % of the circle's radius

43

Computer Graphics

Splines

3 points, deterministic perturbation 5%

44

Computer Graphics

Splines

5 points, deterministic perturbation 5%

45

Computer Graphics

Splines

11 points, deterministic perturbation 5%

46

Computer Graphics

Splines

21 points, deterministic perturbation 5%

47

Computer Graphics

Splines

11 points

non
local
control

48

Computer Graphics

Splines

49

Computer Graphics

Splines

 Perturbation of a point
 We shift one point by a significant amount

50

Computer Graphics

Splines

21 points

51

Computer Graphics

99 points

Splines

52

Computer Graphics

Splines

999 points

53

Computer Graphics

Splines

 Stable interpolation scheme
 Weak Runge phenomenon
 The displacement of a point yet affects all the

curve
 Nevertheless, the perturbation fades very quickly

further away from the shifted point
 « Overshoots » are limited.

54

Computer Graphics

Splines

 Closed curve ?
 The curve can be closed, just impose everywhere that

the second derivative is continuous.

55

Computer Graphics

Splines

 Instead of

... we have

(
4 1 1
1 4 1

1 4 1
⋱

1 4 1
1 1 4

)(
x0

'

x1
'

x2
'

⋮

xn−3
'

xn−2
'

)=(
3(x1−xn−2)

3(x2−x0)

3(x3−x1)

⋮
3(xn−2− xn−4)

3(x0−x n−3)
)

x[n−2]

''
(1)=x[0]

''
(0)⇔ 2a[n−2]2+6a[n−2]3=2a [0] 2

x [0]

''
0 =0⇔ 2a[0] 2=0

x [n−2]

''
1=0⇔ 2a[n−2] 26a[n−2] 3=0

Circulant
matrix

xn−1=x0

xn−1
'

=x0
'and

67

Computer Graphics

Splines

 3D Curves
 Minimal order so that a curve can have a torsion (non

planar curve)
 Let's consider a Lagrange interpolation
 2 points → on a straight line (no curvature)
 3 points → in a plane (no torsion)
 4 points → torsion becomes possible

 Minimal order to join smoothly two arbitrarily oriented
curves = 3

P u=∑
i=0

n−1

P i l i
p
u

68

Computer Graphics

Bézier curves

69

Computer Graphics

Bézier curves

 Bézier curves
 Pierre Bézier (1910-1999)
 Develops UNISURF –

first surface modelling software
at Renault's (1971)

 Publicizes the theory under his name in 1962...
however, the principle was discovered in 1959 by Paul
de Casteljau (at Citroën's) ! Because of the “culture of
secret” at Citroën, De Casteljau will have his works
recognized only in 1975.

70

Computer Graphics

Bézier curves

 Use of Bézier curves :
 Postscript fonts (cubic Bézier) & TrueType (quadratic

Bézier)

 Computer graphics
 In geometrical modelling and CAD, they tend to be

replaced by more general techniques (NURBS)

AaBbCc

71

Computer Graphics

Bézier curves

 Modelling by interpolation is not very practical
 We seldom have interpolation points at our hand

 Instead, we hope to define these points as the result of a modeling
process instead of as an input data

 Approximation gives more freedom in the design of
the curve

72

Computer Graphics

Bézier curves

 Elements of a Bézier curve :

n=d+1 control points

Bézier curve

Control Polygon
with d=n-1 sides

(also called
characteristic

polygon)

For Bézier curves,
the notion of knot
is trivial :
u0=0 u1=1

73

Computer Graphics

Bézier curves

 Characteristics of Bézier curves
 More freedom than interpolation

 Any degree
 Precise control of the curve's shape
 Numerical stability even with high degree (not as Lagrange !)

 The are Bernstein polynomials (Sergei N. Bernstein, 1880-1968 -
don't mistake for Leonard Bernstein...:) :

 They form a complete polynomial basis
 They are a partition of the unity
 We sometimes call them blending functions
 The curve is described as one polynomial (unlike splines)

P (u)=∑
i=0

d

P i Bi
d
(u)

Bi
d
u 

74

Computer Graphics

Bézier curves

 Bernstein polynomials

Bi
d
u =d

i ui
1−u

d −i

Binomial coefficients

75

Computer Graphics

Bézier curves
 Binomial coefficients : computed with Pascal's

triangle
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
1 2 3 4 5

d=0

1

2

3

4

5

d
i 

d
i = d !

d−i ! i !

(d
i)=(d−1

i)+(d−1
i−1)

i=0

76

Computer Graphics

Bézier curves

 Bernstein polynomials

 By design, they form a partition of unity...

Bi
d
(u)=(d

i)ui
(1−u)

d −i

1

Binomial coefficients

=∑
i=0

d

Bi
d
(u)

=∑
i=0

d

(d
i) Ai Bd−i

1=[(1−u)+u]
d
=[A+ B]

d =∑
i=0

d

(d
i)ui

(1−u)
d−i

77

Computer Graphics

Partition of unity

 Property of affine invariance
 It is a useful property that the curves we define for a

set of control points can undergo linear affine
transformations.

 Let P
i
* the affine transformation of the control points P

i

 Let P*(P
i
) the affine transformation of the points of the curve P(P

i
)

defined from the original points P
i

 Let P(P
i
*) the new curve based on the modified control points P

i
* ,

with the same parametrization.

 The affine invariance is verified iff P*(P
i
) = P(P

i
*) for all

u.

78

Computer Graphics

Partition of unity

 Affine transformations

Translation

Scaling

3 rotations

Shear

 12 degrees of freedom

P ≡A⋅Pu

u=[
a
b
c] ; A=[

1 0 0
0 1 0
0 0 1]

u=0 ; A=[
d 0 0
0 e 0
0 0 f]

u=0 ; A=[
cos  −sin  0
sin  cos  0

0 0 1]⋯
u=0 ; A=[

1 g h
0 1 i
0 0 1]

79

Computer Graphics

Partition of unity

Let P a parametric curve built this way :

 Let's verify the invariance by a translation t:

P u=∑
0

n−1

P i K i
n
u

P P i
*
=∑

0

n−1

P it  K i
n
u =∑

0

n−1

P i K i
n
u ∑

0

n−1

t K i
n
u

=P u∑
0

n−1

t K i
n
u

=P (u)+ t=P*
(Pi) iff ∑

0

n−1

K i
n
(u)=1

Partition of unity

80

Computer Graphics

Partition of unity

 For the other multiplicative transformations

Consequently, iff the basis functions form a partition of
unity, and the dependence with respect to the control
points is linear, the representation is invariant by any
affine transformation.

P (Pi
*
)=∑

0

n−1

(A⋅P i) K i
n
(u)=A⋅∑

0

n−1

P i K i
n
(u)

=A⋅P (u)=P*
(P i)

(no particular conditions except linearity with respect to
the control points coordinates)

81

Computer Graphics

Bézier curves

 Some characteristics of the B. polynomials.


 has a root of multiplicity i for u=0
 has a root of multiplicity d-i for u=1

 (symmetry of the basis)

 If i≠0, has a unique maximum at u=i/d

Bi
d
(u)=0 if i< 0 or i> d

Bi
d
(0)=δi 0 and Bi

d
(1)=δi d

Bi
d
u

Bi
d
(u)≥0 for u∈[0,1]

Bi
d
u 

Bi
d
(1−u)=Bd−i

d
(u)

Bi
' d

=d  Bi−1
d −1

u−Bi
d−1

u  
Bi

d
u 

Bi
d
(i /d)=i i d−d

(d−i)(d−i)(d
i)

82

Computer Graphics

Bézier curves

 Demonstration of Bi
' d

(u)=d (Bi−1
d −1

(u)−Bi
d −1

(u))

Bi
' d

(u)=(d
i)i u(i−1)

(1−u)
d−i

−(d
i)(d −i)ui

(1−u)
d −i−1

(d
i)= d !

(d−i)! i !
=(d −1

i−1) d
i

Bi
' d

(u)=d (d−1
i−1)u(i−1)

(1−u)
d−i

−d (d−1
i)ui

(1−u)
(d−1)−i

(d
i)= d !

(d−i)! i !
=(d −1

i) d
d−i

d Bi−1
d−1

(u) d Bi
d−1

(u)

QED

83

Computer Graphics

Bézier curves

 Recurrence relations of Bernstein's basis

... but no practical interest other than demonstrating
algebraic relations (cf. following)

 These polynomials are usually not computed explicitly

Bi
d
u =1−u Bi

d−1
uu Bi−1

d−1
u

Bd
d
u =u Bd−1

d−1
u  B0

d
u=1−uB0

d−1
u 

84

Computer Graphics

Bézier curves

 Demonstration of the recurrence relations

Bi
d
u=d

i ui
1−u

d −i (d
i)=(d−1

i)+ (d −1
i−1)

=(d −1
i)⋅ui

(1−u)
d −i

+ (d −1
i−1)⋅ui

(1−u)
d −i

=(1−u)⋅(d −1
i)⋅ui

(1−u)
(d−1)−i

+ u⋅(d −1
i−1)⋅u(i−1)

(1−u)
(d−1)−(i−1)

(1−u)⋅Bi
d −1

(u) u⋅Bi−1
d −1

(u)

QED

85

Computer Graphics

Bézier curves

 Degree 4
 No negative values

Therefore, no value
above 1!

86

Computer Graphics

Bézier curves

 Degree 20
 No extreme values

Therefore, no value
above 1!

 Existence of a limiting
envelope

e (u)=
1

√2 d π u(1−u)

e (u)

87

Computer Graphics

Bézier curves

 The characteristics of Bernstein polynomials
involve that the Bézier curve

 :
 interpolates P

0
 et P

d
 ,

 is invariant by affine transformations ,
 is contained in the convex

hull of its control points
(because P(u) is a combination
with positive coefficients of
control points – also called
convex combination) ,

P u=∑
i=0

d

Pi Bi
d
u 

88

Computer Graphics

Bézier curves

(following)
 is variation diminishing : the curve has less inflexion

points (wiggles) than there are undulations of the
characteristic polynomial (proof by the fact that a
Bézier curve is obtained by recursive subdivision, see
further) ,

 delimits a closed convex domain if the control polygon
itself is convex and closed... ,

 Its length is smaller than that of the control polygon.

89

Computer Graphics

Bézier curves

 Same examples as shown earlier on Lagrange
interpolation

 Circle with an increasing number of points
 Perturbation of the control points

90

Computer Graphics

Bézier curves

Degree 2

91

Computer Graphics

Bézier curves

Degree 4

92

Computer Graphics

Bézier curves

Degree 10

93

Computer Graphics

Bézier curves

Degree 20

94

Computer Graphics

Bézier curves

 When the number of control points increases, the
curve tends to the control polygon (under the
assumption that the control polygon itself converges to
a smooth curve ...)

 The approximation involves a substantial error
between the curve and the control points

 However, an interpolation is not the objective here...

95

Computer Graphics

Bézier curves

 Perturbation of a point
 We shift the indicated point

96

Computer Graphics

Bézier curves

Degree 4

97

Computer Graphics

Bézier curves

Degree 10

98

Computer Graphics

Bézier curves

Degree 20

99

Computer Graphics

Bézier curves

 Editing Bézier curves
 Degree elevation
 Computation of points on the curve (De Casteljau's

algorithm and others)
 Changing the range of a curve

 Cutting, extension

 Curves defined by pieces and recursive subdivision

100

Computer Graphics

 Degree elevation
 A curve of degree d+1 is able to represent any curve

of degree d
 If there aren't enough control points to design a given

shape, the degree may be increased...
 New control points must be determined (one more !)
 Forrest's equations [1972]

Q0=P0

Q i=
i

d +1
P i−1+(1−

i
d+1

) Pi for i=1,⋯ , d

Qd 1=P d

Bézier curves

101

Computer Graphics

Bézier curves

 Demonstration of Forrest's equations :

 Let's express in function of

P (u)=∑
i=0

d

P i Bi
d
(u) Q (u)=∑

i=0

d+1

Q i Bi
d +1

(u)

Q (u)=P (u) ∀ u∈[0,1]

Bi
d
(u)=(d

i)ui
(1−u)

d−i

Bi
d +1

(u)Bi
d
(u)

Bi
d +1

(u)=(d +1
i)ui

(1−u)
d−i+1

=(1−u)
(d +1

i)

(d
i)

Bi
d
(u)

Q i= f (P0 ... P d)

102

Computer Graphics

Bézier curves

 We replace the terms of the binomial

(d +1
i)=

(d +1) !
(d +1−i)! i !

=(d
i) d +1

d+1−i

Bi+1
d +1

(u)=(d +1
i+1)ui+1

(1−u)
d−i

=u
(d +1

i+1)

(d
i)

Bi
d
(u)

(d +1
i+1)=

(d +1)!
(d−i)!(i+1)!

=(d
i) d +1

i+1

(d
i)= d !

(d−i)! i !

Bi
d +1

(u)=(1−u)
d +1

d +1−i
Bi

d
(u) Bi+1

d +1
(u)=u

d +1
i+1

Bi
d
(u)

103

Computer Graphics

Bézier curves

Bi
d
(u)=

d +1−i
d +1

B i
d +1

(u)+
i+1
d +1

Bi+1
d +1

(u)

Q (u)=P (u)⇒∑
i=0

d +1

Qi Bi
d+1

(u)=∑
i=0

d

P i(d +1−i
d+1

Bi
d+1

(u)+
i+1
d+1

Bi +1
d+1

(u))
=∑

i=0

d

P i(1−
i

d +1)Bi
d+1

(u)+∑
i=1

d+1

P i−1
i

d+1
Bi

d+1
(u)

=∑
i=1

d

(P i(1−
i

d+1)+ P i−1
i

d +1) Bi
d+1

(u)+ P0 B0
d+1

(u)+ Pd Bd +1
d +1

(u)

Q
i

Q
d +1

Q
0

Bi
d
(u)=(1−u) Bi

d
(u)+u Bi

d
(u) We split up Bi

d
(u)

QED

104

Computer Graphics

Bézier curves

 Degree elevation in practice ...

Degree 4

105

Computer Graphics

Bézier curves

Degree 5

106

Computer Graphics

Bézier curves

Degree 6

107

Computer Graphics

Bézier curves

Degree 7

108

Computer Graphics

Bézier curves

Degree 8

109

Computer Graphics

Bézier curves

Degree 9

110

Computer Graphics

Bézier curves

Degree 21

111

Computer Graphics

Bézier curves

 De Casteljau's algorithm
 Allows the robust construction of points on the curve
 Very simple geometrical interpretation

112

Computer Graphics

Bézier curves

 Principle of De Casteljau's algorithm
 Construction of the centroids of the control points

:
 We continue with

 As far as possible, until only one control point remains,
That control point is P(u).

P i
0

P i
1

P i
1
=(1−u) P i

0
+u P i+1

0

P i
2

P0
d

113

Computer Graphics

Bézier curves

 Kig

114

Computer Graphics

Bézier curves

 The algorithm is :

 What is its complexity ?
 Consists of 3d(d+1) multiplications

and 3d(d+1)/2 additions , so quadratic with respect of
the the degree d.

Initialization of
For j from 1 to d
 For i from 0 to d-j

 EndFor
EndFor
 is the point we want.

P i
j
=1−u  Pi

j−1
u Pi1

j−1

P0
d

P i
0

115

Computer Graphics

Bézier curves

 Demonstration with the help of recurrence
relations

By gathering the terms :

by setting

P (u)=∑
i=1

d−1

Pi ((1−u) Bi
d−1

(u)+u Bi−1
d−1

(u))

+P0(1−u) B0
d−1

(u)+ Pd uBd−1
d−1

(u)

Bi
d
(u)=(1−u) Bi

d−1
(u)+u Bi−1

d−1
(u)

Bd
d
(u)=u Bd−1

d−1
(u) B0

d
(u)=(1−u) B0

d−1
(u)P u=∑

i=0

d

Pi Bi
d
u 

P (u)=∑
i=0

d−1

[(1−u) P i+u P i+1] Bi
d−1

(u)

P i
1
=1−u Pi

0
u Pi1

0

B i
d −1

u 

P u=∑
i=0

d −1

P i
1 Bi

d−1
u

116

Computer Graphics

Bézier curves

 We do it again with P u=∑
i=0

d −1

P i
1 Bi

d−1
u

P(u)=∑
i=1

d−2

Pi
1
((1−u)Bi

d−2
(u)+ u Bi−1

d−2
(u))

+ P0
1
(1−u)B0

d−2
(u)+ Pd−1

1 u Bd−2
d−2

(u)

P u=∑
i=0

d −2

Pi
2 Bi

d −2
u

P u=P0
d B0

0
u , B0

0
u≡1 QED

P u=∑
i=0

d −2

[1−u P i
1
u P i1

1] Bi
d −2

u

......

117

Computer Graphics

Bézier curves

 Evaluation with Horner's method
 We rewrite the polynomials to a monomial form

a i=M hP i M h=(
1 0 0 ⋯ 0

−d d 0 ⋯ 0
d (d−1)

2
−d (d−1)

d (d−1)

2
⋯ 0

⋮ ⋮

−1d−1 d d (d−1) ⋯ ⋯ 0

−1d
−1d−1 d −1d−2 d (d−1)

2
⋯ 1

)
ai=d

i ∑
j=0

i

−1
i− j  i

j  P j

P u=∑
i=0

d

Pi Bi
d
u=∑

i=0

d

ai u
i

118

Computer Graphics

Bézier curves

 Complexity of Horner's method :
 3d multiplications + 3d additions ... without taking into

account the change of polynomial basis (to be done
only once)

 But : change of the internal representation
 Some authors have shown that numerical errors introduced during

the change of internal representation are substantial.

a i=M hP i

119

Computer Graphics

Bézier curves

 Method based on Bernstein polynomials
 We factor the terms in

 This is a monomial form that can be evaluated with
Horner's method – without any change of the internal
representation (points P

i
)

 But beware when u → 1 !!!!
 We'd rather factor rather the terms , That gives :

P u=∑
i=0

d

Pi Bi
d
u=1−u

d∑
i=0

d

Pi d
i  u

1−u 
i

1−u 
d−i Bi

d
u =d

i ui
1−u

d −i

ui

P u=∑
i=0

d

Pi Bi
d
u=ud∑

i=0

d

Pi d
i  1−u

u 
d −i

120

Computer Graphics

Bézier curves

 To summarize :

P u={
1−u

d ∑
i=0

d

P i d
i  u

1−u 
i

 , 0u≤
1
2

ud ∑
i=0

d

P i d
i  1−u

u 
d−i

 ,
1
2

u≤1

P(u)=(1−u)
d
(P0 P1 ⋯ P d)(

(d
0)

(d
1) u

1−u

(d
2)(u

1−u)
2

⋮

(d
d)(u

1−u)
d)

121

Computer Graphics

Bézier curves

 Algorithmic complexity of the vectorial method
 Requires 6d multiplications and 3d additions.
 No change in the internal representation

122

Computer Graphics

Bézier curves

 Choice of algorithm ?
 Robustness

 1 De Casteljau
 2 Vectorial
 3 Horner

 Speed
 1 Horner
 2 Vectorial
 3 De Casteljau *

De Casteljau

Vectorial

Horner

d

T
ot

al
 f

lo
ps

123

Computer Graphics

Bézier curves

 In practice
 The vectorial algorithm is often used to quickly

compute points for display purposes
 De Casteljau's algorithm is used for increased

robustness and ...
 It allows to obtain derivatives of curve (see later...)
 It allows interesting geometrical operations (see later …)
 If many points are to be computed, it may actually perform well (see

later !)

124

Computer Graphics

Bézier curves

 Restriction of a curve (cutting)
 Let us compute the intersection of two curves

 We need a independent representation of each segment
 One wants 0<u<1 on each segment

file:///media/bechet/scratch/bechet/boulot/cours/cours_liege/CAO/cours3/bezier.kig

125

Computer Graphics

Bézier curves

 Let us start from De Casteljau's geometrical
construction

126

Computer Graphics

Bézier curves

 Let us start from De Casteljau's geometrical
construction

 The control polygon of the both parts is obtained from
points coming from De Casteljau's algorithm !

127

Computer Graphics

Bézier curves

 Curve to trim

u=0

I
0

P
0

0

u=1

I
1

P
3

0

P
1

0

P
2

0

128

Computer Graphics

Bézier curves

 For a curve that we want to trim :

1 – Compute the intersection point I
1
 – at u=u

1
 with help

of De Casteljau's algorithm – this gives the points P
i
j

129

Computer Graphics

Bézier curves

1 – Compute the intersection point I
1
 – at u=u

1
 with help

of De Casteljau's algorithm – this gives the points P
i
j

u=0

I
0

P
0

0

u=1

I
1

P
3

0

P
1

0

P
2

0

P
0
1

P
1

1

P
2

1

P
0

2

P
1

2

P
0

3

130

Computer Graphics

Bézier curves

 For a curve that we want to limit :

1 – Compute the intersection point I
1
 – at u=u

1
 with help

of De Casteljau's algorithm – this gives the points P
i
j

2 – Among these points, consider the points P
0

j : they
are vertices of the characteristic polygon of the curve's
restriction at the interval P

0
-I

1
 , and the new

parametrization is u*=u/u
1

131

Computer Graphics

Bézier curves

 2 – Among these points, consider the points P
0

j : they
are vertices of the characteristic polygon of the curve's
restriction at the interval P

0
-I

1
 , and the new

parametrization is u*=u/u
1

u=0

I
0

P
0

0

u=1

I
1

P
0
1

P
0

2

P
0

3

u*=0

u*=1

132

Computer Graphics

Bézier curves

 For a curve that we want to limit :

1 – Compute the intersection point I
1
 – at u=u

1
 with help

of De Casteljau's algorithm – this gives the points P
i
j

2 – Among these points, consider the points P
0

j : they
are vertices of the characteristic polygon of the curve's
restriction at the interval P

0
-I

1
 , and the new

parametrization is u*=u/u
1

3 – Calculate the intersection I
0
 on the new curve – at

u*=u*
0
 - gives the points P*

i
j

133

Computer Graphics

Bézier curves

3 – Calculate the intersection I
0
 on the new curve – at

u*=u*
0
 - gives the points P*

i
j

P*
2
1

P*
1

1

P*
0

1 P*
0

3

P*
0

2

P*
1

2

u=0

I
0

u=1

I
1

P*
2

0

P*
3

0

u*=0

u*=1
u

0
*

P*
1

0

P*
0

0

134

Computer Graphics

Bézier curves

 For a curve that we want to limit :
1 – Compute the intersection point I

1
 – at u=u

1
 with help

of De Casteljau's algorithm – this gives the points P
i
j

2 – Among these points, consider the points P
0

j : they
are vertices of the characteristic polygon of the curve's
restriction at the interval P

0
-I

1
 , and the new

parametrization is u*=u/u
1

3 – Calculate the intersection I
0
 on the new curve – at

u*=u*
0
 - gives the points P*

i
j

4 – Consider the points P*
i
d : vertices of the

characteristic polygon of the curve's restriction to the
interval I

0
-I

1
 : new parametrization is u'=(u*-u*

0
)/(1-u*

0
)

135

Computer Graphics

Bézier curves

4 – Consider the points P*
i
d-i : vertices of the

characteristic polygon of the curve's restriction to the
interval I

0
-I

1
 : new parametrization is u'=(u*-u*

0
)/(1-u*

0
)

P*
2
1

P*
0

3

P*
1

2

u=0

I
0

u=1

I
1

P*
3

0

u*=1

u*=0

u'=1u'=0

136

Computer Graphics

Bézier curves

P'
2

P'
0

P'
1

I
0

I
1

P'
3

u'=1

u'=0

137

Computer Graphics

Bézier curves

 With the same algorithm, we can increase the
parametric domain of a curve

 Intersection with objects close but not touching the
curve's extremities

 Beware : Bézier curves are variation diminishing and
convex combinations only when 0≤u≤1...

138

Computer Graphics

Bézier curves

u=0.8
u=0.1

Desired cutting points

139

Computer Graphics

Bézier curves

Cutting for u=0.8

140

Computer Graphics

Bézier curves

Cutting for u=0.8...and for u=0.1 (at u*=0.1/0.8)

141

Computer Graphics

Bézier curves

Extension for u=1.1

142

Computer Graphics

Bézier curves

Extension for u=1.1 and cutting for u=0.1 - at (new
parameter) u*=0.1/1.1 ...

143

Computer Graphics

Bézier curves

 Curves defined by pieces
 Bézier curves do have a global control
 If we need local control, we have to assemble several

of them
 We have to impose some continuity at the interface points between

curves

144

Computer Graphics

=d  P0B−1
d −1

−B0
d−1



P1B0
d−1

−B1
d −1



P2B1
d −1

−B2
d−1



 ⋯

Pd Bd−1
d−1

−Bd
d −1



Bézier curves

 Expression of the derivatives of a Bézier curve

 with

 By factoring :

dP
du

(u)=d ∑
i=0

d−1

(P i+1−Pi)Bi
d−1

(u)

dP
du

u=∑
i=0

d

Pi Bi
' d

u Bi
' d

=d  Bi−1
d −1

u −Bi
d−1

u 

dP
du

u=d ∑
i=0

d

Pi  Bi−1
d −1

u −Bi
d −1

u

Bi
d −1

u

=0

=0

P i
'
=P i+1−P i

145

Computer Graphics

Bézier curves

 First derivative

 The control points P'
0
 and P'

d-1

are interpolated so the first derivative
at the extremities only depends

on the two first (resp.
last) control points

dP
du

u=d ∑
i=0

d −1

P i1−P i Bi
d−1

u

dP
du

u=d ∑
i=0

d −1

Pi
' Bi

d−1
u 

O P(u)

P
2

P
0

P
1

P
3

P'
0

P'
1

P'
2

1
d

dP
du

u
O

First hodograph

146

Computer Graphics

Bézier curves

 Second derivative = derivative of the derivative

 The control points P''
0
 and P''

d-2
...

are interpolated, so the second derivative at
the extremities only depends on
the three first (resp. last)
control points

d 2 P
du2 u=d−1d ∑

i=0

d−2

Pi1
'

−P i
'
 Bi

d−2
u

d 2 P
du2 u=d−1d ∑

i=0

d−2

Pi
'' Bi

d −2
u

P'
0

P'
1

P'
2

1
d

d P
d u

u

O
1

d d −1

d 2 P
du2 u

P''
1

P''
2

Second hodograph

147

Computer Graphics

Bézier curves

 Derivative of order k

 The derivative of order k at
the extremities only depends on the
k+1 first (resp. last) control points.

 Of course, there must be enough control points ...
(k < d+1)

d k P
duk u=d −k1⋯d−1d ∑

i=0

d−k

Pi1
(k-1)

−Pi
(k-1)

 Bi
d−k

u

d k P

duk
u=∏

l=1

k

d −l1∑
i=0

d−k

P i
(k) Bi

d −k
u  , Pi

(k)
=P i1

(k-1)
−Pi

(k-1)


=(Pi+ 2
(k-2)

−2 Pi+ 1
(k-2)

+ Pi
(k-2)

)

=∑
j=0

k

(−1)
j

(d
j) P j+ i

(0)

148

Computer Graphics

Bézier curves

154

Computer Graphics

Bézier curves

 Connecting two curves is the same as imposing
constraints on the control points on both sides of the
« sticking » point

 We assume that the curves are regular

 G
0
 continuity (positions) (same as C

0
 continuity)

P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

155

Computer Graphics

Bézier curves

 G
1
 continuity (C

1
 continuity is more strict)

 Minimum degree : 2

P
0

P
1

P
3
=P*

0

P*
1 P*

2

P*
3

P
2

P d−1 Pd= P0
* P1

* , > 0 (=1 for a C1 continuity)

156

Computer Graphics

Bézier curves

 G
2
 continuity (C

2
 continuity is more strict)

 Continuity of the osculatory plane's orientation

 Continuity of the curvature radius

Pd −Pd −1×Pd −1−Pd −2=P2
*
−P1

*
×P1

*
−P0

*


d‖Pd−1−Pd−2‖
3

(d−1)‖(P d−P d−1)×(Pd−1−Pd−2)‖
=

d *‖P1
*
−P0

*‖
3

(d *
−1)‖(P2

*
−P1

*
)×(P1

*
−P0

*
)‖

R=
∥dP

du∥
3

∥d 2 P

du2 ×
dP
du∥

157

Computer Graphics

Bézier curves

 G
2
 continuity (C

2
 continuity is more strict)

 Continuity of the osculatory plane's orientation

 Continuity of the curvature radius

Pd −Pd −1×Pd −1−Pd −2=P2
*
−P1

*
×P1

*
−P0

*


P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

d‖Pd−1−Pd−2‖
3

(d−1)‖(P d−P d−1)×(Pd−1−Pd−2)‖
=

d *‖P1
*
−P0

*‖
3

(d *
−1)‖(P2

*
−P1

*
)×(P1

*
−P0

*
)‖

158

Computer Graphics

Bézier curves

 The G
k
 continuity with k > 2 in the general case is

complex to impose

 The C
k
 continuity is easier to impose (simple

expression of higher order derivatives)
 Curve should be regular !
 Same as imposing the continuity of functions x(u), y(u) and z(u) ,

independently of each other.

d k P

duk
u=∏

l=1

k

d−l1∑
i=0

d−k

Pi
(k) Bi

d−k
u 

159

Computer Graphics

Bézier curves

 C
0
 continuity

P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

Pd=P0
*

160

Computer Graphics

Bézier curves

 C
1
 continuity

P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

P1
*
=Pd Pd−Pd −1

161

Computer Graphics

Bézier curves

 C
2
 continuity

P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

P2
*
=Pd−24P d−Pd−1

162

Computer Graphics

Bézier curves

 C
3
 continuity

P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

P3
*
=8 Pd−12 Pd −16 Pd −2−Pd −3

163

Computer Graphics

Bézier curves

 The curve has now a unique representation of degree
3.

P
0

P*
3

164

Computer Graphics

Bézier curves

 Recursive subdivision
 Allows to draw the curve quickly with the help of De

Casteljau's algorithm
 Idea : splitting up the curve in two parts at u=0.5, then these sub-

curves in four parts (still for u*=0.5) and so on.
 The control points of the sub-curves are obtained like a residual of

the De Casteljau algorithm at each step
 The control points quickly converge toward the curve
 When the gap between the starting and ending points of each sub-

curves is lower than a factor (depends on the resolution), we join
simply the points of the characteristic polygon by straight line
segments.

 It's a « divide and conquer » approach – a famous paradigm in
software engineering.

file:///media/bechet/scratch/bechet/boulot/cours/cours_liege/CAO/cours3/bezier2.kig

165

Computer Graphics

Bézier curves

0 subdivision

2 subdivisions

4 subdivisions

8 subdivisions

16 subdivisions

32 subdivisions

166

Computer Graphics

Bézier curves

 Cost of the recursive subdivision algorithm
 In for m levels of subdivision
 Number of generated points:
 For each point that is generated, the algorithm

becomes linear...
 Competitive in comparison with Horner
 It is not very accurate, nevertheless very robust.

O d 2
⋅2m



d⋅2m

167

Computer Graphics

B-Splines

168

Computer Graphics

B-Splines

 Three useful references :

R. Bartels, J.C. Beatty, B. A. Barsky, An
introduction to Splines for use in Computer
Graphics and Geometric Modeling, Morgan
Kaufmann Publications,1987

JC.Léon, Modélisation et construction de
surfaces pour la CFAO, Hermes, 1991

L. Piegl, W. Tiller, The NURBS Book, Second
Edition, Springer , 1996

169

Computer Graphics

B-Splines

 Isaac J. Schoenberg (1946)
 Carl De Boor (1972-76)
 Maurice G. Cox (1972)
 Richard Riesenfeld (1973)
 Wolfgang Boehm (1980)

170

Computer Graphics

B-Splines

 For Bézier curves, the polynomial degree is directly
related to the number of control points.

 The control of the continuity between Bézier curves is not trivial

 B-Splines are a generalization in the sense that the
degree doesn't depend on the number of control
points

 One can impose every continuity at any point of the curve (we will
see later how to do that)

 They are polynomial curves, by pieces (Bézier curves have a unique
polynomial representation along the interval of definition)

 They may provide local control
 The parametrization can be freely chosen (with Bézier, it is fixed ,

usually 0<u<1.)

171

Computer Graphics

B-Splines

 Basis of Bézier curves :

 The support of the basis functions is the interval [0..1]
 Continuity is , and between different Bézier curves

it is enforced by a wise choice of the P
i
's

 B-splines basis

 The basis functions N
i
d are piecewise polynomials

 Have a compact support + satisfy partition of the unity
 The continuity is defined at the basis function's level.

P u=∑
i=0

d

Pi Bi
d
u 

P u=∑
i=0

n

Pi N i
d
u 

C∞

172

Computer Graphics

B-Splines

 The basis functions B-spline are defined
 by the nodal sequence and by the polynomials degree

of the curve

 Nodal sequence:
 It is a series of values u

i
 (knots) of the parameter u of

the curve, not strictly increasing – there can be equal
values.

 ex. U={0,0,0,1,2,3,4,4,4}

179

Computer Graphics

B-Splines

 Constuction of B-Spline basis functions
 Truncated Power Function

 It is a function of Cd-1 continuity

(u−ui)+

d
={(u−ui)

d if u≥ui

0 otherwise
u

i

180

Computer Graphics

B-Splines

 Divided differences
 order one (similar to a simple derivative)

 order 2 : application of the above formula twice...

[ui , ui1]U f U =
f ui1− f ui

ui1−ui
U is a hidden parameter
(variable used to differentiate)

[ui , ui+ 1 , ui+ 2]U f (U)=
[ui+ 1 , ui+ 2]U f (U)−[ui , ui+ 1]U f (U)

ui+ 2−ui

[ui , ui+ 1 , ui+ 2]U f (U)=

f (ui+ 2)− f (ui+ 1)

ui+ 2−ui+ 1

−
f (ui+ 1)− f (ui)

ui+ 1−ui

ui+ 2−ui

181

Computer Graphics

B-Splines

 At the order k

 One assumed that

 Properties (see Bartels, 1987)
1- In the case where

2- if and

[ui ,⋯ , ui+k] f =
[ui+1 ,⋯ , ui+k] f −[ui ,⋯ , ui+k−1] f

ui +k−ui

ui≠ui1≠ui2⋯

ui=ui1=ui2⋯

[ui ,⋯ , uik] f =
1
k !

d k f

d uk ∣
u=u i

ui≠ui + 1≠ui+ 2⋯ uiui1ui2⋯

[ui ,⋯ , uik] f =
1
k !

d k f

d uk ∣
u=u*

, uiu*
uik

182

Computer Graphics

B-Splines

3- is symmetric with respect to the knot vector

4- If f(u) is a polynomial of degree at the most equal to k , then

is a constant with respect to the u
i
.

5- The divided difference of f=g(u).h(u) is :

[ui ,⋯ , ui+ k] f

[ui ,⋯ , ui+ k] f

[ui ,⋯ , uik] f = ∑
j=i

j=ik

[ui ,⋯ , u j] g ⋅[u j ,⋯ , uik]h

183

Computer Graphics

B-Splines

 Divided differences and B-Splines

 How to cancel quadratic terms ?
→ subtract adjacent truncated power functions.

(u−u0)+
2

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk)+
2

(u−u1)+
2
−(u−u0)+

2

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk)+
2

(u−uk)+
2
−(u−uk −1)+

2

u
k-1

last term remains

184

Computer Graphics

B-Splines

 Problem, lower order terms are dependent on k

But, dividing by yields a divided difference :

(u−uk)+
2
−(u−uk −1)+

2

uk−uk −1

=[uk −1 , uk]U (u−U)+
2

(uk −uk−1)

(u−uk)+
2
−(u−uk−1)+

2|u>uk
=0⋅u2

+(uk−uk−1)⋅u+(uk−uk−1)(uk +uk −1)⋅1

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk)+
2

u
k-1

last term remains

[uk−1 , uk]U (u−U)+
2

[u0 , u1]U (u−U)+
2

185

Computer Graphics

B-Splines

 Now, cancel linear terms …

 Same procedure : subtract adjacent terms.

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk)+
2

u
k-1

last term remains

[uk−1 , uk]U (u−U)+
2

[u0 , u1]U (u−U)+
2

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk)+
2

u
k-1

Two last term remains

[uk−1 , uk]U (u−U)+
2

[u1 , u2]U (u−U)+
2
− [u0 , u1]U (u−U)+

2

186

Computer Graphics

B-Splines

 Again, lower order terms are dependent on k

Dividing by yields again a divided difference :

[uk−1 , uk−2]U (u−U)+
2
−[uk , uk−1]U (u−U)+

2

uk−uk−2

=[uk−2 , uk−1 , uk]U (u−U)+
2

(uk −uk−2)

[uk −1 , uk−2]U (u−U)+
2
−[uk , uk −1]U (u−U)+

2|u>uk

=0⋅u+((uk +uk −1)−(uk −1+uk−2))⋅1=(uk−uk−2)⋅1

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk)+
2

u
k-1

Two last term remains

[uk−1 , uk]U (u−U)+
2

[u0 , u1 ,u2]U (u−U)+
2

187

Computer Graphics

B-Splines

 Now, cancel constant terms …

 Same procedure : subtract adjacent terms.

u
0

u
1

u
2

u
3

u
k-2

u
k

(u−uk)+
2

u
k-1

Three last term remains

[uk−1 , uk]U (u−U)+
2

[u1 , u2 ,u3]U (u−U)+
2
− [u0 , u1 , u2]U (u−U)+

2

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk)+
2

u
k-1

Two last term remains

[uk−1 , uk]U (u−U)+
2

[u0 , u1 ,u2]U (u−U)+
2

188

Computer Graphics

B-Splines

 There are no lower order terms. However we might
divide anyway by to remain consistent and
get again an expression as a divided difference...

[uk−2 , uk−1 , uk]U (u−U)+
2
−[uk−3 , uk−2 , uk−1]U (u−U)+

2

uk −uk−3

=[uk−3 , uk −2 , uk −1 , uk]U (u−U)+
2

(uk−uk −3)

u
0

u
1

u
2

u
3

u
k-2

u
k

(u−uk)+
2

u
k-1

Three last term remain

[uk−1 , uk]U (u−U)+
2

[u0 , u1 ,u2 , u3]U (u−U)+
2 [uk−2 , uk−1 , uk]U (u−U)+

2

189

Computer Graphics

B-Splines

 The sign is alternating with the degree. Shape function
of even degree are negative, while SF of uneven
degree are negative.

 Multiplying by makes every SF positive.
 To ensure that the SF form a partition of unity , we

have to multiply again by
 The compact representation of the B-Splines basis

functions of degree d with the use of divided
differences is therefore :

(−1)
d +1

N i
d
=(−1)

d+1
(ui +d+1−ui)[ui ,⋯ , ui+d +1]U (u−U)+

d

(ui+d +1−ui)

190

Computer Graphics

B-Splines

 Proof of the partition of unity : consider the second last
operation (the cancellation of constant terms)

 We subtract consecutive terms to form the final shape functions
 Partition of unity means the sum of all the final shape functions is

equal to 1… that this is indeed the case only on a certain range of u.

u
0

u
1

u
2

u
3

u
4

u
m-2

u
m-3

[um−2⋯um]U (u−U)+
d

+
-
+

-
+

-
+

-
...

u
m-1

u
m

1

More generally, there is
partition of unity for
, m+1 being the number of
knots in the knot vector

ud≤u≤um−d

[u0⋯um]

K [um−d−1⋯um]U (u−U)+
d
≡N m−d−1

d
(u)N 0

d
(u)

193

Computer Graphics

B-Splines

 Recursive definition of basis functions
 Setting

(nodal sequence)
 The functions are such as : (recurrence formula of

Cox – de Boor)

 Where u
i+d

- u
i
=0, necessarily

By convention, we set in this case when the
limit is undefined.

U ={u0 ,⋯ , um} , ui≤ui1 , i=0⋯m−1

N i
d
u=

u−ui

uid−ui

N i
d−1

u 
uid1−u

uid1−ui1

N i1
d−1

u

N i
0
(u)={1 if ui≤u< ui+ 1

0 otherwise

0
0

=0

N i
d−1

u≡0

194

Computer Graphics

B-Splines

 Example : computation of basis functions of
degree for U ={u0=0,u1=0,u2=0,u3=1,u4=1,u5=1}

N 0
0
=0

N 1
0
=0

N 2
0
={1 0≤u< 1

0 otherwise

N 3
0
=0

N 4
0
=0

d ≤2

N 0
1
=0

N 1
1
={1−u 0≤u< 1

0 otherwise

N 2
1
={u 0≤u< 1

0 otherwise

N 3
1
=0

N 0
2
={(1−u)

2 0≤u< 1
0 otherwise

N 1
2
={2 u (1−u) 0≤u< 1

0 otherwise

N 2
2
={u2 0≤u< 1

0 otherwise

Bernstein polynomials of degree 2

N 0
1
u=

u−u0

u1−u0

N 0
0
u 

u2−u

u2−u1

N 1
0
u 

0
0

=0

by convention

195

Computer Graphics

B-Splines

 The Bernstein polynomials of degree d are a
particular case of the B-splines basis

 They correspond to a nodal sequence

 Bézier curves are therefore a particular case of B-
splines.

 It is also possible to transform any B-spline into a
sequence of Bézier curves – because the Bernstein
polynomials form a complete basis of polynomials of
degree d.

U B={u0=0,⋯ , ud =0,ud1=1,⋯ , u2 d1=1}

196

Computer Graphics

B-Splines

 Basis functions and control points
 In contrary to Bézier curves, the number of control

points is not imposed by the degree d
 Let m+1 the number of knots. We have n+1

independent basis functions at our hands
 For every basis function, we associate a control point

 The number of control points is fixed by the relation
n+1=m-d

P u=∑
i=0

n

Pi N i
d
u 

197

Computer Graphics

B-Splines

 Types of nodal sequence...
 Uniform – The gap between two successive knots is constant

 Periodic - The gap between the knots at the start of a nodal
sequence is identical to the one at the end of the nodal sequence

 Non uniform, interpolating – first and last control point are interpolated

In the sequel, except where indicated, we consider non
uniform nodal sequences interpolating the first and last
control points.

U ={a ,⋯, a
d1

, ud1 ,⋯ , um−d −1 , b ,⋯, b
d1

}

U ={u0 , u1 ,⋯ , um−d −1} , ui1−ui=k

U ={u0,⋯ , ud
d1

, ud1 ,⋯, um−d−1 , u ' 0,⋯ , u ' d
d1

} , u ' i−ui=k

198

Computer Graphics

B-Splines

U ={0,
5
6

,
10
6

,
15
6

,
20
6

,
25
6

,5} d=0 m1=7 n1=6

199

Computer Graphics

B-Splines

U ={0 ,0 ,1 ,2 ,3 ,4 ,5 ,5} d =1 m1=8 n1=6

200

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,
5
4

,
10
4

,
15
4

,5 , 5 ,5} d =2 m1=9 n1=6

201

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0,
5
3

,
10
3

,5 , 5 ,5 ,5} d=3 m+1=10 n+1=6

202

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0,0 ,
5
2

, 5 ,5 ,5 ,5 ,5} d=4 m1=11 n1=6

203

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0, 0 , 0 ,5,5 , 5 ,5 ,5 ,5} d =5 m1=12 n1=6
Bernstein polynomials (with a factor on u)

204

Computer Graphics

B-Splines

 Properties of B-spline basis functions
 outside the interval
 Inside the interval , at most d+1 functions

 are non zero :
 (always positive)
 For (forms a partition of

unity)
 All derivatives of exist inside the

interval . At a knot , is d-k times
differentiable, k being the node multiplicity.

 Except for d=0, reaches exactly one maximum

N i
d
u=0 [ui , ui +d+1[

[ui , ui +1 [
N *

d
(u) N i−d

d ,⋯ , N i
d

N i
d
(u)≥0 ∀ i , d and u

u∈[ui , ui +1 [, ∑
j=i−d

i

N j
d
(u)=1

N i
d
u

[ui , ui1 [N i
d
u

N i
d
u

205

Computer Graphics

B-Splines

U ={0 , 0 ,0 ,0,1 , 2 ,3 ,4 ,5 ,5 ,5 ,5} d=3 m1=12 n1=8
The knot u=3 is of multiplicity 1

206

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0,1 , 2 ,3 ,3 ,5 ,5 , 5 ,5} d =3 m1=12 n1=8
The node u=3 is of multiplicity 2

207

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0,1 ,3 , 3 , 3 ,5 ,5 ,5 ,5} d=3 m1=12 n1=8
The node u=3 is of multiplicity 3

208

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0,3 ,3 ,3 , 3 ,5 ,5 ,5 ,5} d =3 m1=12 n1=8
The node u=3 is of multiplicity 4

Curve 1 Curve 2

210

Computer Graphics

B-Splines

 The characteristics of basis functions involve that
the B-Spline curve

 interpolates P

0
 and P

n
 ,(only if the nodal sequence

admits d+1 repetitions at the start and at the end !)
 is invariant by affine transformation ,
 is contained by the convex hull of the control points

(because P(u) is a linear combination of the control
points with positive coefficients which sum to one)

P u=∑
i=0

n

Pi N i
d
u  U ={u0 ,⋯ , um} , ui≤ui1 , i=0⋯m−1

211

Computer Graphics

B-Splines

(Following)
 Is variation diminishing : The number of inflexion

points is lower than the number of wiggles of the
characteristic polygon

 Is closed and convex if the characteristic polygon is
closed and convex,

 Is of length shorter or equal than that of the control
polygon.

 Is invariant by linear transformation of the nodal
sequence u'=au+b , a>0

212

Computer Graphics

B-Splines

 Control points, degree and nodal sequence
 We associate a control point for each basis function

N
i
* . We have n+1 control points.

 The degree d is chosen by the user.
 The nodal sequence (that defines the intervals of the

parameter on which the curve has a unique
polynomial definition) is then built. We have
m+1=n+d+2 knots (with d+1 repetitions at the start and
at the end)

 there remains n-d values of the parameter to set (without taking into
account the boundaries)

213

Computer Graphics

B-Splines

 Geometric examples
 Constant number of control points
 We increase the degree
 Uniform repartition of knots (except at the boundaries)
 For which degree do we have the best approximation

of the control points ??

214

Computer Graphics

B-Splines

Degree 1
0 0 0.0833333 0.166667 0.25 0.333333 0.416667 0.5 0.583333 0.666667 0.75 0.833333 0.916667 1 1

215

Computer Graphics

B-Splines

degree 2
0 0 0 0.0909091 0.181818 0.272727 0.363636 0.454545 0.545455 0.636364 0.727273 0.818182 0.909091 1 1 1

216

Computer Graphics

B-Splines

degree 3
0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 1

217

Computer Graphics

B-Splines

degree 4
0 0 0 0 0 0.111111 0.222222 0.333333 0.444444 0.555556 0.666667 0.777778 0.888889 1 1 1 1 1

218

Computer Graphics

B-Splines

degree 6
0 0 0 0 0 0 0 0.142857 0.285714 0.428571 0.571429 0.714286 0.857143 1 1 1 1 1 1 1

219

Computer Graphics

B-Splines

degree 10
0 0 0 0 0 0 0 0 0 0 0 0.333333 0.666667 1 1 1 1 1 1 1 1 1 1 1

220

Computer Graphics

B-Splines

degree 12 (Bézier)
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

221

Computer Graphics

B-Splines

 Impose interpolation points (and C
0
continuity)

 It is the same as positioning knots of multiplicity d in
the nodal sequence

 One could also repeat d control points...(not shown
here)

222

Computer Graphics

B-Splines

degree 3
0 0 0 0 0.1 0.2 0.5 0.5 0.5 0.7 0.9 0.9 0.9 1 1 1 1

u=0

u=0.1

u=0.2

u=0.5

u=0.7

u=0.9

u=1

223

Computer Graphics

B-Splines

degree 3 (4 Bézier curves of continuity C
0
)

0 0 0 0 0.1 0.1 0.1 0.5 0.5 0.5 0.9 0.9 0.9 1 1 1 1

u=0.1

u=0.5
u=0.9

u=0

u=1

224

Computer Graphics

B-Splines

degree 3 (3 Bézier curves of continuity C
0
+ 1 bspline deg 3 with 4control pts)

0 0 0 0 0.1 0.1 0.1 0.4 0.4 0.4 0.8 0.8 0.8 0.9 1 1 1 1

u=0.1

u=0.4
u=0.8

u=0

u=1

u=0.9

225

Computer Graphics

B-Splines

 And if we want to impose interpolation points and
a certain continuity C

k
 ?

 Add / align control points in a similar way than in the
case of Bézier curves.

226

Computer Graphics

B-Splines

227

Computer Graphics

B-Splines

 Periodic curves
 They may be represented by modifying the nodal

sequence and by repeating some control points.

Non-uniform nodal sequence

Uniform nodal sequence

uniform nodal sequence
and periodic curve

228

Computer Graphics

B-Splines

degree 3
0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 1

non uniform nodal sequence interpolating
the first and last control points.

229

Computer Graphics

B-Splines

degree 3
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Periodic nodal sequence
(but control points located
in a non adequate way)

230

Computer Graphics

B-Splines

degree 3
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

231

Computer Graphics

B-Splines

degree 3
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

232

Computer Graphics

B-Splines

degree 3
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Periodic nodal sequence
+ control points placed in an adequate way (repeated)
= periodic curve

233

Computer Graphics

B-Splines

 Algorithms for the manipulation of B-Splines
curves

 Boehm's knot insertion algorithm
 Evaluation of the curve (Cox-de Boor algorithm)
 Derivatives and hodographs
 Restriction/growth of the useful interval of a curve
 Degree elevation
 Recursive Subdivision

234

Computer Graphics

B-Splines

 Boehm's knot insertion algorithm

The idea is to determine a new control polygon for the
same curve after the insertion of one or several knots
in the nodal sequence.

The curve is not modified by this change : neither the
shape nor the parametrization are affected.

Interest :
 Evaluation of points on the curve
 Subdivision of the curve
 Addition of control points

235

Computer Graphics

B-Splines

 Let a B-Spline curve built on the
 nodal sequence :

 Let a knot to be inserted
 The new nodal sequence is :

 The new representation of the curve is :

 The are the basis functions defined on , the are the
n+2 new control points.

 How define the so that the shape is unchanged ?

P u=∑
i=0

n

Pi N i
d
u 

U ={u0 ,⋯ , um}

u∈[uk , uk 1 [

U ={u0=u0 ,⋯ ,uk=uk ,uk 1=u ,⋯,um1=um}

P u=∑
i=0

n1

Qi
N i

d
u 

N i
d
u U Qi

Qi

241

Computer Graphics

B-Splines

After algebraic manipulations... we obtain

We had :

so finally :

Qk−d=Pk −d

Q i=α i P i+(1−αi)P i−1 for i∈{k−d +1 ,⋯, k }

Qk +1=P k

P i=Q i for i∈{0 ,⋯ , k−d−1}
P i=Q i +1 for i∈{k +1 ,⋯, n}

Q i=α i P i+(1−αi)P i−1 with αi={
1 i≤k−d

ū−ui

ui+ p−ui

k−d +1≤i≤k

0 i≥k +1

242

Computer Graphics

B-Splines

 Multiple knot insertions
 Assume of multiplicity s (). We

want to insert it r times with .

 We note Q
i
r the control points of the r-th insertion step

 We have then :

u∈[uk , uk 1 [
rs≤d

0≤sd

Q i
r
=α i

r Q i
r−1

+(1−αi
r
)Q i−1

r−1 with αi
r
={

1 i≤k−d +r−1
ū−ui

ui +d−r +1−ui

k−d +r≤i≤k−s

0 i≥k−s+1

243

Computer Graphics

Q k−d1
1

Qk−d 2
2

Qk−d2
1

⋮ ⋮ ⋯ Q k
d

Qk −1
1

Qk
2

Qk
1

B-Splines

 The Q's can be put in a table:

 The total number of new control points is d-s+r-1 that
replace d-s-1.

244

Computer Graphics

B-Splines

 The use of the algorithm of node insertion up to
multiplicity of d=r+s is such that the curve will
interpolate the last control point that is computed.

 Therefore, one can use this algorithm to compute the
position of a point of the curve knowing the parameter.

 It's precisely Cox-de Boor's algorithm. The sequence of points P
i
j is

not anything else than the Q
i
j indicated on the graph, cf following

Q k− d1
1

Q k −d2
2

Q k− d2
1

⋮ ⋮ ⋯ Q k
d

Q k −1
1

Q k
2

Q k
1

245

Computer Graphics

B-Splines

 Case r+s=d+1 : We carry out the insertion of
multiplicity r-1 then we insert one more knot to « cut »
the B-spline curve in two independent parts.

 The last control point has to be duplicated.
 Allows to extract a portion of the B-spline.

 There exists an extension of this algorithm in the
case of the simultaneous insertion of many
knots: it is the somewhat more complex “Oslo”
algorithm*

Qk
d

* E. Cohen, T. Lyche, R. Riesenfeld “Discrete B-splines ans subdivision techniques in
computer-aided geometric design and computer graphics”, Computer Graphics and Image
Processing, 14(2):87-111, 1980.

246

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 , 1 ,1 , 1 ,1 ,1 ,1}

degree 5

247

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 , 1 ,1 , 1 ,1 ,1 ,1}

degree 5

248

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 , 1 ,1 , 1 ,1 ,1 ,1}

degree 5

249

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 ,0.2 , 1 ,1 ,1 ,1 ,1 ,1}

degree 5

250

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 , 0.2 , 0.4 ,1 ,1 ,1 ,1 , 1 ,1}

degree 5

251

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 , 0.2 , 0.4 ,0.6 ,1 ,1 , 1 ,1 ,1 ,1}

degree 5

252

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 , 0.2 , 0.4 ,0.6 ,0.8 ,1 ,1 ,1 ,1 ,1 , 1}

degree 5

253

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 ,0 , 0.1 , 0.2 ,⋯ ,0.9 ,1 ,1 ,1 ,1 ,1 ,1}

degree 5

254

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 ,0 , 0.05 ,0.1 ,⋯ ,0.95 , 1 ,1 ,1 ,1 ,1 ,1}

degree 5

255

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 ,0 , 0.05 ,0.1 ,⋯ ,0.95 , 1 ,1 ,1 ,1 ,1 ,1}

degree 5
Local control...

256

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 , 1 ,1 , 1 ,1 ,1 ,1}

degree 5

257

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 ,0.3 ,1 ,1 ,1 ,1 ,1 , 1}

degree 5

258

Computer Graphics

B-Splines

U ={0 ,0 , 0 ,0 ,0 , 0 , 0.3 , 0.3 ,1 , 1 ,1 ,1 ,1 ,1}

degree 5

259

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 , 0.3 , 0.3 ,0.3 ,1 ,1 ,1 ,1 , 1 ,1}

degree 5

260

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 ,0 , 0.3 , 0.3 ,0.3 ,0.3 , 1 ,1 ,1 ,1 ,1 ,1}

degree 5

261

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 , 0.3 , 0.3 ,0.3 ,0.3 , 0.3 ,1 ,1 ,1 , 1 ,1 ,1}

degree 5

262

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,0 , 0 , 0.3 , 0.3 ,0.3 ,0.3 , 0.3 ,1 ,1 ,1 , 1 ,1 ,1}

degree 5

263

Computer Graphics

B-Splines

 Computation of a point on a B-Spline curve
 By the use of basis functions

1 – Find the nodal interval in which u is located

2 – Calculate the non vanishing basis functions

3 – Multiply the values of these basis functions with the
right control points

 By Cox-de Boor's algorithm

u∈[ui , ui1 [

N i−d
d

u ,⋯, N i
d
u

P u=∑
k

N k
d
u  P k i−d ≤k≤i

264

Computer Graphics

B-Splines

 (simplified) Cox-de Boor's Algorithm :

 What is its complexity ?
 quadratic in function of the degree d.

Determine the interval of u :
Initialization of
For k from 1 to d
 For j from i to i-d+k

 Endfor
Endfor
 is the point that is sought.

P j
k
= u−u j

u jd 1−k−u j
 P j

k−1
 u jd1−k −u

u jd 1−k−u j
 P j−1

k−1

P i
d

P j
0

u∈[ui , ui1 [
i∈{d , d1,⋯ , m−d−1}

265

Computer Graphics

B-Splines

 Example of computation

 Determination of the interval

 Iteration 1

 Iteration 2

 Iteration 3

P0
0
=0 ,1 P1

0
=2 ,3 P2

0
=5 ,4 P3

0
=7 ,1 P 4

0
=6 ,−1 P5

0
=6 ,−2

U ={0 , 0 ,0 ,0 ,1 ,2 ,3 ,3 , 3 , 3} d =3 u=3/2

1≤3/2<2 , u4=1 → i=4

P 4
1
=(27/4 ,1 /2) P3

1
=(6 ,5/2) P2

1
=(17 /4 ,15/5)

P 4
2
=(99 /16 , 2) P3

2
=(89/16 , 45/16)

P 4
3
=(47 /8 , 77 /32)=P (3/2)

P j
k
=(

u−u j

u j+ d+1−k−u j
) P j

k −1
+(

u j +d +1−k−u

u j+d+1−k−u j
) P j−1

k−1

JC Leon

266

Computer Graphics

B-Splines

 The algorithm is similar to De Casteljau's algorithm for
Bézier curves

 It is built on a restriction of the set of control points (d+1 points)
 On this restriction, it is identical, except for the coefficients related to

the nodal sequence (which is potentially non uniform)
 The complete algorithm is somewhat longer than this one

 (possibility to have 0/0 : we set conventionally 0/0 = 0 !)

267

Computer Graphics

B-Splines

 Transformation of a B-Spline curve into a
composite Bézier curve

 We saturate each distinct knot until its multiplicity is
equal to d.

 This is made with the help of Boehm's algorithm of
nodal insertion.

 The curve is not modified !

 We obtain a nodal sequence which has the following
form :

 Each distinct value of u corresponds to one of the points of the
curve.

U ={a , a , a ,a⏟
d+ 1 times

, b ,b , b⏟
d times

, c , c , c⏟
d times

,⋯ , z , z , z , z⏟
d+ 1 times

}

268

Computer Graphics

B-Splines

U ={0 ,0 , 0 ,0 ,1 , 2 ,3 ,3 , 3 ,3}

degree 3

269

Computer Graphics

B-Splines

U ={0 ,0 , 0 ,0 ,1 , 1 ,2 ,3 , 3 ,3 ,3}

270

Computer Graphics

B-Splines

U ={0 ,0 , 0 ,0 ,1 , 1 ,1 , 2 ,3 ,3 ,3 ,3}

271

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,1 ,1 ,1 ,2 ,2 ,3 , 3 ,3 ,3}

272

Computer Graphics

B-Splines

U ={0 , 0 , 0 ,0 ,1 ,1 ,1 ,2 ,2 ,2 ,3 ,3 ,3 ,3}

273

Computer Graphics

B-Splines

Bézier n°3 Bézier n°2 Bézier n°1
 4 CP 4 CP 4 CP
degree 3 degree 3 degree 3

274

Computer Graphics

B-Splines

 Some conclusions
 Flexibility
 Low order
 Continuity
 Periodic curves
 Conics ?

