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Computer Graphics

Course outline

 Introduction 
 Images and display techniques

 Bases
 Gamma correction
 Aliasing and techniques to remedy
 Storage 
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Computer Graphics

Course outline

 3D Perspective & 2D / 3D transformations
 Go from a 3D space to a 2D display device

 Two paradigms for image synthesis
 Representation of curves and surfaces

 Splines & co.
 Meshes 

 Realistic rendering by ray tracing
 Concepts and theoretical bases
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Computer Graphics

Representation of curves and surfaces
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Computer Graphics

 Curves
 Interpolation

 Cubic Splines

 Approximation
 Bézier Curves
 B-spline Curves

 Surfaces
 Interpolation

 Coons Patches

 Approximation
 B-splines Surfaces
 Subdivision Surfaces
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 Two useful references...

JC.Léon, Modélisation et construction de surfaces 
pour la CFAO, Hermes, 1991

L. Piegl, W. Tiller, The NURBS Book, Second Edition, 
Springer , 1996
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Cubic Splines



7

Computer Graphics

Splines

  Goal :
 Interpolate points (control points)

 Go through points ( interpolation ≠ approximation)

 Ensure a certain regularity to the curve
 Simple (easy) to compute
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Splines

 Let start with the idea that we have many control 
points

 Lagrange interpolation ?
 This corresponds to a unique polynomial interpolating every control 

points (d+1)

 C
∞ 

 Continuity

P u=∑
i=0

d

Pi Li
d
u 
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Lagrange Interpolation
21 CP 
All on a circle, with a slight perturbation

Splines
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Splines

 Motivation
Let us imagine that we have many (100's of) 
control points

 But we don't want a Lagrange interpolation !
 We should stay with a low order scheme but conserve 

enough freedom to pass through every point
 Curve defined by pieces ... and of low order (1) 
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Splines

 We are going to build a low order interpolation for 
each knot interval, such that we can impose 
slopes at the knots.

u=u
i+1

u=u
i

P=P
i+1

P=P
i

P'=P'
i

P'=P'
i+1
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Splines

 In each range [i,i+1] , we want to have an 
independent polynomial

 We have 4 parameters : position at each knot 
and associated tangents.

 The basis must have 4 degrees of freedom, thus be of 
order 3 in the case of polynomials.

x [i ]u =A[ i ]0A[i ]1 uA[i ]2 u2
A[i ]3 u3 , u∈[ui , ui1]

P ui=P i ≡ {xui=xi

y ui= y i
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Splines

 First, every interval has a unit length i.e. 

 Then we ensure identical intervals [0...1] between 
each interpolation point :

 On each interval  i , we thus have the following 
relation:

ui1−ui=1

u=
u−ui

u i1−ui

=u−ui

x[i ](ū)=a[i ]0+a[i ]1 ū+a[ i ]2 ū2
+a[i ] 3 ū3 , ū∈[0,1]

d u
du

=1



14

Computer Graphics

Splines

P=P
i+1

P=P
i

P'=P'
i

P'=P'
i+1

u=0

u=1
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Splines

 We pass through both control points:

 We impose both slopes :

 At the end :

P u0=0=P i ⇔a[i ]0a[ i]1 u0a[i ] 2u0
2
a[ i ]3 u0

3
=xi

P u1=1=P i1⇔a[i ]0a[i ]1 u1a[i ] 2 u1
2
a[ i ]3 u1

3
=x i1

P '
u0=0=P 'i ⇔ a[i ]12a[i ] 2 u03a[ i ]3 u0

2
=x i

'

P '
u1=1=P 'i1 ⇔a[i ]12a [i ] 2 u13a [i ]3 u1

2
=x i1

'

{
a[ i]0=xi

a[ i]1=x i
'

a[ i] 2=3 xi1−x i−2 xi
'
−x i1

'

a[ i]3=2xi−x i1xi
'
x i1

'
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Splines

 We have continuity
 We have continuity of the derivatives
 But how to choose the slopes ?

 Let the user choose ( “artistic” freedom)
 Automatically ...
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Splines

 By finite differences with three points :

 At the boundaries, we use finite differences (asymmetric)

 The result depends on the parametrization !

 Cardinal spline

 c is a « tension » parameter. c=0 gives yields the so called “Catmull-
Rom” spline, c=1 a zigzagging line.

x i
'
=

xi1−xi

2 ui1−ui


xi−xi−1

2 ui−ui−1

x0
'
=

x1−x0

u1−u0

xn−1
'

=
x n−1−xn−2

un−1−un−2

x i
'
=1−c

x i1−xi−1

2
 , 0≤c≤1

x0
'
=(1−c)(x1− x0)

xn−1
'

=(1−c)(xn−1−xn−2)
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Splines

5 points, finite differences by varying the parametrization 
[0..1] , [0..2] , [0..5] , [0..10]

Continuity of the curve/parameter 
but loss of regularity (and of geometric continuity
in many cases)
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Splines

5 points, Cardinal Spline (Catmull-Rom)  c=0



20

Computer Graphics

Splines

Catmull-Rom Splines are widely used in computer 
graphics

 Simple to compute, effective
 Local control (price to pay : discontinuous secd derivative)
 Animations with keyframing

 Ensures a fluid motion because of the continuity of the slope
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Splines

5 points, Cardinal Spline c=0.25
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Splines

5 points, Cardinal Spline c=0.5
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Splines

5 points, Cardinal Spline c=0.75
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Splines

5 points, Cardinal Spline c=1.0
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Splines

 We can impose the continuity of second derivatives...
 On a curve with n points, we have n extra relations to impose
 We may impose the continuity of the second derivative only on the  n-2 

interior knots

What about the 2 points on the boundary ?
 Impose a vanishing second derivative.

We obtain what is called  « natural spline »
 We could also impose the slopes (i.e. only n-2 relations remaining)
 Or , impose that the third derivative is zero on the points 1 and n-2

 That means a single polynomial expression for the first two knot 
intervals, and the last two.
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Splines

 Natural Spline : mathematical approximation of the 
spline historically used in naval construction.

C
. D

eB
oor
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Splines

B
oeing
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Splines

 We impose the continuity of the second derivatives

 We substitute in the “internal” equations

 Finally we obtain : 

x[i−1]

''
1=x [i ]

''
0⇔ 2a[i−1] 26a[ i−1]3=2a[i ]2

2 [3x i−x i−1−2 x i−1
'

−x i
'
]6 [2x i−1−x ix i−1

'
x i

'
]

=2 [3 x i1−x i−2 x i
'
−x i1

'
]

x i−1
'

4 x i
'
x i1

'
=3xi1−x i−1
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Splines

 At the boundaries we want

 We have then a linear system with n unknowns :

x [0]

''
0=0⇔ 2a[0] 2=0

x [n−2]

''
1=0⇔ 2a[n−2] 26a[ n−2] 3=0

2 x0
'
x1

'
=3 x1−x0

x n−2
'

2 xn−1
'

=3xn−1−xn−2


2 1
1 4 1

1 4 1
⋱

1 4 1
1 2

 
x0

'

x1
'

x2
'

⋮

xn−2
'

xn−1
'

=
3x1−x0

3 x2−x0

3x3−x1

⋮

3xn−1−xn−3

3 xn−1−x n−2
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Splines

 By solving the system, we have :

 , which is substituted in

,to get the polynomial in each portion :

From the global parameter u, we have to find in which portion we are 
( the value of i ) , then compute right polynomial...


x0

'

x1
'

x2
'

⋮

xn−2
'

xn−1
'

 {
a[i ]0=xi

a[i ]1=x i
'

a[i ] 2=3 xi1−x i−2 xi
'
−x i1

'

a[i ]3=2 xi−x i1xi
'
x i1

'

x [i ]u=a[i ]0a[i ]1ua[ i ]2 u
2
a[i ]3 u

3  , 0≤u1
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Splines

5 control points, natural spline

Catmull-Rom spline
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Splines

 An experiment
 We approximate a circle  by a number of increasing 

points
 Simultaneously , the order of the approximation  the 

number of pieces increases.

 In all the cases, the curve is C

 C

2
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Splines

3 points, order 3!
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Splines

5 points
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Splines

11 points
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Splines

21 points
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Splines

 Random perturbation
 Each point is moved radially by a value between -0.5 

and +0.5 % of the circle's radius
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Splines

3 points, random perturbation 1%
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Splines

5 points, random perturbation 1%
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Splines

11 points, random perturbation 1%
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Splines

21 points, random perturbation 1%
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Splines

 Deterministic perturbation
 Each point is shifted radially depending on its position 

by -5 or +5 % of the circle's radius
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Splines

3 points, deterministic perturbation 5%
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Splines

5 points, deterministic perturbation 5%
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Splines

11 points, deterministic perturbation 5%
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Splines

21 points, deterministic perturbation 5%
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Splines

11 points

non 
local 
control
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Splines
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Splines

 Perturbation of a point
 We shift one point by a significant amount
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Splines

21 points
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Computer Graphics

99 points

Splines
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Splines

999 points
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Splines

 Stable interpolation scheme
 Weak Runge phenomenon
 The displacement of a point yet affects all the 

curve
 Nevertheless, the perturbation fades very quickly 

further away from the shifted point
 « Overshoots » are limited.
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Splines

 Closed curve ?
 The curve can be closed, just impose everywhere that 

the second derivative is continuous.
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Splines

 Instead of 

... we have 

(
4 1 1
1 4 1

1 4 1
⋱

1 4 1
1 1 4

)(
x0

'

x1
'

x2
'

⋮

xn−3
'

xn−2
'

)=(
3(x1−xn−2)

3( x2−x0)

3( x3−x1)

⋮
3( xn−2− xn−4)

3(x0−x n−3)
)

x[n−2]

''
(1)=x[0 ]

''
(0)⇔ 2a[ n−2 ]2+6a[ n−2 ]3=2a [0] 2

x [0]

''
0 =0⇔ 2a[0] 2=0

x [n−2]

''
1=0⇔ 2a[n−2] 26a[ n−2] 3=0

Circulant
matrix

xn−1=x0

xn−1
'

=x0
'and
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Splines

 3D Curves
 Minimal order so that a curve can have a torsion (non 

planar curve)
 Let's consider a Lagrange interpolation
 2 points → on a straight line  (no curvature)
 3 points → in a plane (no torsion)
 4 points → torsion becomes possible

 Minimal order to join smoothly two arbitrarily oriented 
curves  = 3

P u=∑
i=0

n−1

P i l i
p
u
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Bézier curves
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Bézier curves

 Bézier curves
 Pierre Bézier (1910-1999)
 Develops UNISURF – 

first surface modelling software 
at Renault's (1971)

 Publicizes the theory under his name in 1962... 
however, the principle was discovered in 1959 by Paul 
de Casteljau (at Citroën's) ! Because of the “culture of 
secret” at Citroën, De Casteljau will have his works 
recognized only in 1975.
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Bézier curves

 Use of Bézier curves :
 Postscript fonts (cubic Bézier) & TrueType (quadratic 

Bézier)

 Computer graphics
 In geometrical modelling and CAD, they tend to be 

replaced by more general techniques (NURBS)

AaBbCc
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Bézier curves

 Modelling by interpolation is not very practical
 We seldom have interpolation points at our hand 

 Instead, we hope to define these points as the result of a modeling 
process instead of as an input data

 Approximation gives more freedom in the design of 
the curve
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Bézier curves

 Elements of a Bézier curve :

n=d+1 control points

Bézier curve

Control Polygon 
with d=n-1 sides 

(also called  
characteristic 

polygon)

For Bézier curves, 
the notion of knot 
is trivial :
u0=0 u1=1
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Bézier curves

 Characteristics of Bézier curves 
 More freedom than interpolation

 Any degree
 Precise control of the curve's shape
 Numerical stability even with high degree (not as Lagrange !)

 The            are Bernstein polynomials (Sergei N. Bernstein, 1880-1968  - 
don't mistake for Leonard Bernstein...:) :

 They form a complete polynomial basis
 They are a partition of the unity
 We sometimes call them blending functions
 The curve is described as one polynomial (unlike splines)

P (u)=∑
i=0

d

P i Bi
d
(u)

Bi
d
u 
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Bézier curves

 Bernstein polynomials

Bi
d
u =d

i ui
1−u

d −i

Binomial coefficients
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Bézier curves
 Binomial coefficients : computed with Pascal's 

triangle
1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
1 2 3 4 5

d=0

1

2

3

4

5

d
i 

d
i = d !

d−i ! i !

(d
i )=(d−1

i )+(d−1
i−1 )

i=0
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Bézier curves

 Bernstein polynomials

 By design, they form a partition of unity...

Bi
d
(u)=(d

i )ui
(1−u)

d −i

1

Binomial coefficients

=∑
i=0

d

Bi
d
(u)

=∑
i=0

d

(d
i ) Ai Bd−i

1=[(1−u)+u ]
d
=[ A+ B ]

d =∑
i=0

d

(d
i )ui

(1−u)
d−i
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Partition of unity

 Property of affine invariance
 It is a useful property that the curves we define for a 

set of control points can undergo linear affine 
transformations.

 Let P
i
* the affine transformation of the control points P

i

 Let  P*(P
i
) the affine transformation of the points of the curve P(P

i
) 

defined from the original points P
i

 Let  P(P
i
*) the new curve based on the modified control points P

i
* , 

with the same parametrization.

 The affine invariance is verified iff P*(P
i
) = P(P

i
*) for all 

u.
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Partition of unity

 Affine transformations 

Translation

Scaling

3 rotations

Shear

 12 degrees of freedom

P ≡A⋅Pu

u=[
a
b
c ] ; A=[

1 0 0
0 1 0
0 0 1 ]

u=0 ; A=[
d 0 0
0 e 0
0 0 f ]

u=0 ; A=[
cos  −sin  0
sin  cos  0

0 0 1]⋯
u=0 ; A=[

1 g h
0 1 i
0 0 1]
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Partition of unity

Let P a parametric curve built this way :

 Let's verify the invariance by a translation t:

P u=∑
0

n−1

P i K i
n
u

P P i
*
=∑

0

n−1

P it  K i
n
u =∑

0

n−1

P i K i
n
u ∑

0

n−1

t K i
n
u

=P u∑
0

n−1

t K i
n
u

=P (u)+ t=P*
(Pi)  iff ∑

0

n−1

K i
n
(u)=1

Partition of unity
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Partition of unity

 For the other multiplicative transformations

Consequently,  iff the basis functions form a partition of 
unity, and the dependence with respect to the control 
points is linear, the representation is invariant by any 
affine transformation.

P (Pi
*
)=∑

0

n−1

(A⋅P i) K i
n
(u)=A⋅∑

0

n−1

P i K i
n
(u)

=A⋅P (u)=P*
(P i)

(no particular conditions except linearity with respect to
the control points coordinates)
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Bézier curves

 Some characteristics of the B. polynomials.
           
       
           has a root of multiplicity i for u=0
           has a root of multiplicity d-i for u=1
                                         
                           (symmetry of the basis)     
     
 If i≠0,            has a unique maximum at u=i/d

Bi
d
(u)=0  if i< 0  or i> d

Bi
d
(0)=δi 0  and Bi

d
(1)=δi d

Bi
d
u

Bi
d
(u)≥0  for u∈[0,1]

Bi
d
u 

Bi
d
(1−u)=Bd−i

d
(u)

Bi
' d

=d  Bi−1
d −1

u−Bi
d−1

u  
Bi

d
u 

Bi
d
(i /d )=i i d−d

(d−i)(d−i )(d
i )
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Bézier curves

 Demonstration of Bi
' d

(u)=d ( Bi−1
d −1

(u)−Bi
d −1

(u))

Bi
' d

(u)=(d
i )i u(i−1)

(1−u)
d−i

−(d
i )(d −i)ui

(1−u)
d −i−1

(d
i )= d !

(d−i)! i !
=(d −1

i−1 ) d
i

Bi
' d

(u)=d (d−1
i−1 )u(i−1)

(1−u)
d−i

−d (d−1
i )ui

(1−u)
(d−1)−i

(d
i )= d !

(d−i)! i !
=(d −1

i ) d
d−i

d Bi−1
d−1

(u) d Bi
d−1

(u)

QED
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Bézier curves

 Recurrence relations of Bernstein's basis

... but no practical interest other than demonstrating 
algebraic relations (cf. following)

 These polynomials are usually not computed explicitly

Bi
d
u =1−u Bi

d−1
uu Bi−1

d−1
u

Bd
d
u =u Bd−1

d−1
u  B0

d
u=1−uB0

d−1
u 
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Bézier curves

 Demonstration of the recurrence relations

Bi
d
u=d

i ui
1−u

d −i (d
i )=(d−1

i )+ (d −1
i−1 )

=(d −1
i )⋅ui

(1−u)
d −i

+ (d −1
i−1 )⋅ui

(1−u)
d −i

=(1−u)⋅(d −1
i )⋅ui

(1−u)
(d−1)−i

+ u⋅(d −1
i−1 )⋅u(i−1)

(1−u)
(d−1)−(i−1)

(1−u)⋅Bi
d −1

(u) u⋅Bi−1
d −1

(u)

QED
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Bézier curves

 Degree 4
 No negative values

Therefore, no value 
above 1!
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Bézier curves

 Degree 20
 No extreme values

Therefore, no value 
above 1!

 Existence of a limiting 
envelope

e (u)=
1

√2 d π u(1−u)

e (u)
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Bézier curves

 The characteristics of Bernstein polynomials 
involve that the Bézier curve

  :
 interpolates P

0
 et P

d
 ,

 is invariant by affine transformations ,
 is contained in the convex 

hull of its control points
(because P(u) is a combination 
with positive coefficients of 
control points – also called 
convex combination) ,

P u=∑
i=0

d

Pi Bi
d
u 
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Bézier curves

(following)
 is variation diminishing : the curve has less inflexion 

points (wiggles) than there are undulations of the 
characteristic polynomial (proof by the fact that a 
Bézier curve is obtained by recursive subdivision, see 
further ) ,

 delimits a closed convex domain if the control polygon 
itself is convex and closed... , 

 Its length is smaller than that of the control polygon.
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Bézier curves

 Same examples as shown earlier on Lagrange 
interpolation

 Circle with an increasing number of points
 Perturbation of the control points
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Bézier curves

Degree 2
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Bézier curves

Degree 4
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Bézier curves

Degree 10
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Bézier curves

Degree 20
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Bézier curves

 When the number of control points increases, the 
curve tends to the control polygon (under the 
assumption that the control polygon itself converges to 
a smooth curve ... )

 The approximation involves a substantial error 
between the curve and the control points

 However, an interpolation is not the objective here...
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Bézier curves

 Perturbation of a point
 We shift the indicated point 



96

Computer Graphics

Bézier curves

Degree 4



97

Computer Graphics

Bézier curves

Degree 10
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Bézier curves

Degree 20
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Bézier curves

 Editing Bézier curves
 Degree elevation
 Computation of points on the curve (De Casteljau's 

algorithm and others )
 Changing the range of a curve

 Cutting, extension

 Curves defined by pieces and recursive subdivision
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 Degree elevation
 A curve of degree d+1 is able to represent any curve 

of degree d 
 If there aren't enough control points to design a given 

shape, the degree may be increased...
 New control points must be determined  (one more !)
 Forrest's equations [1972] 

Q0=P0

Q i=
i

d +1
P i−1+(1−

i
d+1

) Pi  for i=1,⋯ , d

Qd 1=P d

Bézier curves



101

Computer Graphics

Bézier curves

 Demonstration of Forrest's equations :

 Let's express           in function of          

P (u)=∑
i=0

d

P i Bi
d
(u) Q (u)=∑

i=0

d+1

Q i Bi
d +1

(u)

Q (u)=P (u) ∀ u∈[0,1]

Bi
d
(u)=(d

i )ui
(1−u)

d−i

Bi
d +1

(u)Bi
d
(u)

Bi
d +1

(u)=(d +1
i )ui

(1−u)
d−i+1

=(1−u)
(d +1

i )

(d
i )

Bi
d
(u)

Q i= f ( P0 ... P d)
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Bézier curves

 We replace the terms of the binomial

(d +1
i )=

(d +1) !
(d +1−i)! i !

=(d
i ) d +1

d+1−i

Bi+1
d +1

(u)=(d +1
i+1 )ui+1

(1−u)
d−i

=u
(d +1

i+1 )

(d
i )

Bi
d
(u)

(d +1
i+1 )=

(d +1)!
(d−i)!(i+1)!

=(d
i ) d +1

i+1

(d
i )= d !

(d−i)! i !

Bi
d +1

(u)=(1−u)
d +1

d +1−i
Bi

d
(u) Bi+1

d +1
(u)=u

d +1
i+1

Bi
d
(u)



103

Computer Graphics

Bézier curves

Bi
d
(u)=

d +1−i
d +1

B i
d +1

(u)+
i+1
d +1

Bi+1
d +1

(u)

Q (u)=P (u)⇒∑
i=0

d +1

Qi Bi
d+1

(u)=∑
i=0

d

P i( d +1−i
d+1

Bi
d+1

(u)+
i+1
d+1

Bi +1
d+1

(u))
=∑

i=0

d

P i(1−
i

d +1 )Bi
d+1

(u)+∑
i=1

d+1

P i−1
i

d+1
Bi

d+1
(u)

=∑
i=1

d

(P i(1−
i

d+1 )+ P i−1
i

d +1 ) Bi
d+1

(u)+ P0 B0
d+1

(u)+ Pd Bd +1
d +1

(u)

Q
i

Q
d +1

Q
0

Bi
d
(u)=(1−u) Bi

d
(u)+u Bi

d
(u) We split up Bi

d
(u)

QED
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Bézier curves

 Degree elevation in practice ...

Degree 4
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Bézier curves

Degree 5
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Bézier curves

Degree 6
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Bézier curves

Degree 7
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Bézier curves

Degree 8
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Bézier curves

Degree 9
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Bézier curves

Degree 21
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Bézier curves

 De Casteljau's algorithm
 Allows the robust construction of points on the curve
 Very simple geometrical interpretation
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Bézier curves

 Principle of De Casteljau's algorithm
 Construction of the centroids        of the control points      

:
 We continue with         ....

 As far as possible, until only one control point remains,
That control point is P(u).

P i
0

P i
1

P i
1
=(1−u) P i

0
+u P i+1

0

P i
2

P0
d
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Bézier curves

 Kig
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 The algorithm is  :

 What is its complexity ?
 Consists of 3d(d+1) multiplications

and 3d(d+1)/2 additions , so quadratic with respect of 
the the degree d.

Initialization of 
For j from 1 to d
  For i from 0 to d-j

  EndFor
EndFor
     is the point we want.

P i
j
=1−u  Pi

j−1
u Pi1

j−1

P0
d

P i
0
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 Demonstration with the help of recurrence 
relations

By gathering the terms            :

by setting

P (u)=∑
i=1

d−1

Pi ((1−u) Bi
d−1

(u)+u Bi−1
d−1

(u))

+P0(1−u) B0
d−1

(u)+ Pd uBd−1
d−1

(u)

Bi
d
(u)=(1−u) Bi

d−1
(u)+u Bi−1

d−1
(u)

Bd
d
(u)=u Bd−1

d−1
(u) B0

d
(u)=(1−u) B0

d−1
(u)P u=∑

i=0

d

Pi Bi
d
u 

P (u)=∑
i=0

d−1

[(1−u) P i+u P i+1 ] Bi
d−1

(u)

P i
1
=1−u Pi

0
u Pi1

0

B i
d −1

u 

P u=∑
i=0

d −1

P i
1 Bi

d−1
u
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 We do it again with P u=∑
i=0

d −1

P i
1 Bi

d−1
u

P(u)=∑
i=1

d−2

Pi
1
((1−u)Bi

d−2
(u)+ u Bi−1

d−2
(u))

+ P0
1
(1−u)B0

d−2
(u)+ Pd−1

1 u Bd−2
d−2

(u)

P u=∑
i=0

d −2

Pi
2 Bi

d −2
u

P u=P0
d B0

0
u , B0

0
u≡1 QED

P u=∑
i=0

d −2

[1−u P i
1
u P i1

1 ] Bi
d −2

u

......
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 Evaluation with Horner's method
 We rewrite the polynomials to a monomial form

a i=M hP i M h=(
1 0 0 ⋯ 0

−d d 0 ⋯ 0
d (d−1)

2
−d (d−1)

d (d−1)

2
⋯ 0

⋮ ⋮

−1d−1 d d (d−1) ⋯ ⋯ 0

−1d
−1d−1 d −1d−2 d (d−1)

2
⋯ 1

)
ai=d

i ∑
j=0

i

−1
i− j  i

j  P j

P u=∑
i=0

d

Pi Bi
d
u=∑

i=0

d

ai u
i
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 Complexity of Horner's method :
 3d multiplications + 3d additions ... without taking into 

account the change of polynomial basis (to be done 
only once)

 But : change of the internal representation
 Some authors have shown that numerical errors introduced during 

the change of internal representation are substantial.

a i=M hP i
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 Method based on Bernstein polynomials
 We factor the terms                in 

 This is a monomial form that can be evaluated with 
Horner's method – without any change of the internal 
representation (points P

i
 ) 

 But beware when u → 1 !!!!
 We'd rather factor rather the terms      , That gives :

P u=∑
i=0

d

Pi Bi
d
u=1−u

d∑
i=0

d

Pi d
i  u

1−u 
i

1−u 
d−i Bi

d
u =d

i ui
1−u

d −i

ui

P u=∑
i=0

d

Pi Bi
d
u=ud∑

i=0

d

Pi d
i  1−u

u 
d −i
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 To summarize : 

P u={
1−u

d ∑
i=0

d

P i d
i  u

1−u 
i

 , 0u≤
1
2

ud ∑
i=0

d

P i d
i  1−u

u 
d−i

 , 
1
2

u≤1

P(u)=(1−u)
d
(P0 P1 ⋯ P d)(

(d
0 )

(d
1) u

1−u

(d
2)( u

1−u )
2

⋮

(d
d )( u

1−u )
d )
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 Algorithmic complexity of the vectorial method
 Requires 6d multiplications and 3d additions.
 No change in the internal representation
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 Choice of algorithm ?
 Robustness

 1 De Casteljau
 2 Vectorial
 3 Horner

 Speed
 1 Horner
 2 Vectorial
 3 De Casteljau *

De Casteljau

Vectorial

Horner

d

T
ot

al
 f

lo
ps
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 In practice
 The vectorial algorithm is often used to quickly 

compute points for display purposes
 De Casteljau's algorithm is used for increased 

robustness and ...
 It allows to obtain derivatives of curve (see later...)
 It allows interesting geometrical operations (see later …)
 If many points are to be computed, it may actually perform well (see 

later !)
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 Restriction of a curve (cutting)
 Let us compute the intersection of two curves

 We need a independent representation of each segment
 One wants 0<u<1 on each segment

file:///media/bechet/scratch/bechet/boulot/cours/cours_liege/CAO/cours3/bezier.kig
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 Let us start from De Casteljau's geometrical 
construction
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 Let us start from De Casteljau's geometrical 
construction

 The control polygon of the both parts is obtained from 
points coming from De Casteljau's algorithm !
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 Curve to trim

u=0

I
0

P
0

0

u=1

I
1

P
3

0

P
1

0

P
2

0
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 For a curve that we want to trim :

1 – Compute the intersection point I
1
 – at u=u

1
 with help 

of De Casteljau's algorithm – this gives the points P
i
j
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1 – Compute the intersection point I
1
 – at u=u

1
 with help 

of De Casteljau's algorithm – this gives the points P
i
j

u=0

I
0

P
0

0

u=1

I
1

P
3

0

P
1

0

P
2

0

P
0
1

P
1

1

P
2

1

P
0

2

P
1

2

P
0

3
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 For a curve that we want to limit :

1 – Compute the intersection point I
1
 – at u=u

1
 with help 

of De Casteljau's algorithm – this gives the points P
i
j

2 – Among these points, consider the points P
0

j : they 
are vertices of the characteristic polygon of the curve's 
restriction at the interval  P

0
-I

1
 , and the new 

parametrization is u*=u/u
1
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 2 – Among these points, consider the points P
0

j : they 
are vertices of the characteristic polygon of the curve's 
restriction at the interval  P

0
-I

1
 , and the new 

parametrization is u*=u/u
1

u=0

I
0

P
0

0

u=1

I
1

P
0
1

P
0

2

P
0

3

u*=0

u*=1
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 For a curve that we want to limit :

1 – Compute the intersection point I
1
 – at u=u

1
 with help 

of De Casteljau's algorithm – this gives the points P
i
j

2 – Among these points, consider the points P
0

j : they 
are vertices of the characteristic polygon of the curve's 
restriction at the interval  P

0
-I

1
 , and the new 

parametrization is u*=u/u
1

3 – Calculate the intersection I
0
 on the new curve – at 

u*=u*
0
 - gives the points P*

i
j
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3 – Calculate the intersection I
0
 on the new curve – at 

u*=u*
0
 - gives the points P*

i
j

P*
2
1

P*
1

1

P*
0

1 P*
0

3

P*
0

2

P*
1

2

u=0

I
0

u=1

I
1

P*
2

0

P*
3

0

u*=0

u*=1
u

0
*

P*
1

0

P*
0

0
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 For a curve that we want to limit :
1 – Compute the intersection point I

1
 – at u=u

1
 with help 

of De Casteljau's algorithm – this gives the points P
i
j

2 – Among these points, consider the points P
0

j : they 
are vertices of the characteristic polygon of the curve's 
restriction at the interval  P

0
-I

1
 , and the new 

parametrization is u*=u/u
1

3 – Calculate the intersection I
0
 on the new curve – at 

u*=u*
0
 - gives the points P*

i
j

4 – Consider the points P*
i
d : vertices of the  

characteristic polygon of the curve's restriction to the 
interval I

0
-I

1
 : new parametrization is u'=(u*-u*

0
)/(1-u*

0
) 
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4 – Consider the points P*
i
d-i : vertices of the  

characteristic polygon of the curve's restriction to the 
interval I

0
-I

1
 : new parametrization is u'=(u*-u*

0
)/(1-u*

0
)

P*
2
1

P*
0

3

P*
1

2

u=0

I
0

u=1

I
1

P*
3

0

u*=1

u*=0

u'=1u'=0
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P'
2

P'
0

P'
1

I
0

I
1

P'
3

u'=1

u'=0
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 With the same algorithm, we can increase the 
parametric domain of a curve

 Intersection with objects close but not touching the 
curve's extremities 

 Beware : Bézier curves are variation diminishing and 
convex combinations only when 0≤u≤1... 
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u=0.8
u=0.1

Desired cutting points



139

Computer Graphics

Bézier curves

Cutting for u=0.8
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Cutting for u=0.8...and for u=0.1 (at u*=0.1/0.8)
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Extension for u=1.1
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Extension for u=1.1 and cutting for u=0.1 - at (new 
parameter) u*=0.1/1.1 ...
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 Curves defined by pieces
 Bézier curves do have a global control
 If we need local control, we have to assemble several 

of them
 We have to impose some continuity at the interface points between 

curves
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=d  P0B−1
d −1

−B0
d−1



P1B0
d−1

−B1
d −1



P2B1
d −1

−B2
d−1



 ⋯

Pd Bd−1
d−1

−Bd
d −1



Bézier curves

 Expression of the derivatives of a Bézier curve

   with 

 By factoring             :

dP
du

(u)=d ∑
i=0

d−1

(P i+1−Pi)Bi
d−1

(u)

dP
du

u=∑
i=0

d

Pi Bi
' d

u Bi
' d

=d  Bi−1
d −1

u −Bi
d−1

u 

dP
du

u=d ∑
i=0

d

Pi  Bi−1
d −1

u −Bi
d −1

u

Bi
d −1

u

=0

=0

P i
'
=P i+1−P i
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 First derivative

 The control points P'
0
 and P'

d-1
 

are interpolated so the first derivative
at the extremities only depends

on the two first (resp. 
last) control points

dP
du

u=d ∑
i=0

d −1

P i1−P i Bi
d−1

u

dP
du

u=d ∑
i=0

d −1

Pi
' Bi

d−1
u 

O P(u)

P
2

P
0

P
1

P
3

P'
0

P'
1

P'
2

1
d

dP
du

u
O

First hodograph
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 Second derivative = derivative of the derivative

 The control points P''
0
 and P''

d-2
... 

are interpolated, so the second derivative at
the extremities only depends on 
the three first (resp. last)
control points

d 2 P
du2 u=d−1d ∑

i=0

d−2

Pi1
'

−P i
'
 Bi

d−2
u

d 2 P
du2 u=d−1d ∑

i=0

d−2

Pi
'' Bi

d −2
u

P'
0

P'
1

P'
2

1
d

d P
d u

u

O
1

d d −1

d 2 P
du2 u

P''
1

P''
2

Second hodograph
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 Derivative of order k

 The derivative of order k at 
the extremities only depends on the 
k+1 first (resp. last) control points.

 Of course, there must be enough control points ...  
( k < d+1 )

d k P
duk u=d −k1⋯d−1d ∑

i=0

d−k

Pi1
(k-1)

−Pi
(k-1)

 Bi
d−k

u

d k P

duk
u=∏

l=1

k

d −l1∑
i=0

d−k

P i
(k) Bi

d −k
u    ,    Pi

(k)
=P i1

(k-1)
−Pi

(k-1)


=(Pi+ 2
(k-2)

−2 Pi+ 1
(k-2)

+ Pi
(k-2)

)

=∑
j=0

k

(−1)
j

(d
j ) P j+ i

(0)
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 Connecting two curves is the same as imposing 
constraints on the control points on both sides of the 
« sticking » point

 We assume that the curves are regular

 G
0
 continuity  (positions) (same as C

0
 continuity)

P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2
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 G
1
 continuity ( C

1
 continuity is more strict)

 Minimum degree  : 2

P
0

P
1

P
3
=P*

0

P*
1 P*

2

P*
3

P
2

P d−1 Pd= P0
* P1

*  , > 0   (=1  for a C1  continuity )
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 G
2
 continuity ( C

2
 continuity is more strict)

 Continuity of the osculatory plane's orientation 

 Continuity of the curvature radius

Pd −Pd −1×Pd −1−Pd −2=P2
*
−P1

*
×P1

*
−P0

*


d‖Pd−1−Pd−2‖
3

(d−1)‖(P d−P d−1)×(Pd−1−Pd−2)‖
=

d *‖P1
*
−P0

*‖
3

(d *
−1)‖(P2

*
−P1

*
)×(P1

*
−P0

*
)‖

R=
∥dP

du∥
3

∥d 2 P

du2 ×
dP
du∥
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 G
2
 continuity ( C

2
 continuity is more strict)

 Continuity of the osculatory plane's orientation 

 Continuity of the curvature radius

Pd −Pd −1×Pd −1−Pd −2=P2
*
−P1

*
×P1

*
−P0

*


P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

d‖Pd−1−Pd−2‖
3

(d−1)‖(P d−P d−1)×(Pd−1−Pd−2)‖
=

d *‖P1
*
−P0

*‖
3

(d *
−1)‖(P2

*
−P1

*
)×(P1

*
−P0

*
)‖
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 The G
k
 continuity with k > 2 in the general case is 

complex to impose

 The C
k
 continuity is easier to impose (simple 

expression of higher order derivatives)
 Curve should be regular !
 Same as imposing the continuity of functions  x(u), y(u) and z(u) , 

independently of each other.

d k P

duk
u=∏

l=1

k

d−l1∑
i=0

d−k

Pi
(k) Bi

d−k
u 
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  C
0
 continuity

P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

Pd=P0
*
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  C
1
 continuity

P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

P1
*
=Pd Pd−Pd −1
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  C
2
 continuity

P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

P2
*
=Pd−24P d−Pd−1
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  C
3
 continuity

P
0

P
1

P
3
=P*

0

P*
1

P*
2

P*
3

P
2

P3
*
=8 Pd−12 Pd −16 Pd −2−Pd −3
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 The curve has now a unique representation of degree 
3.

P
0

P*
3
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 Recursive subdivision
 Allows to draw the curve quickly with the help of De 

Casteljau's algorithm
 Idea : splitting up the curve in two parts at u=0.5, then these sub-

curves in four parts ( still for u*=0.5) and so on.
 The control points of the sub-curves are obtained like a residual of 

the De Casteljau algorithm at each step
 The control points quickly converge toward the curve
 When the gap between the starting and ending points of each sub-

curves is lower than a factor (depends on the resolution), we join 
simply the points of the characteristic polygon by straight line 
segments.

 It's a « divide and conquer » approach – a famous paradigm in 
software engineering. 

file:///media/bechet/scratch/bechet/boulot/cours/cours_liege/CAO/cours3/bezier2.kig
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0 subdivision

2 subdivisions

4 subdivisions

8 subdivisions

16 subdivisions

32 subdivisions
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 Cost of the recursive subdivision algorithm
 In     for m levels of subdivision
 Number of generated points: 
 For each point that is generated, the algorithm 

becomes linear... 
 Competitive in comparison with Horner 
 It is not very accurate, nevertheless very robust.

O d 2
⋅2m



d⋅2m
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 Three useful references :

R. Bartels, J.C. Beatty, B. A. Barsky, An 
introduction to Splines for use in Computer 
Graphics and Geometric Modeling, Morgan 
Kaufmann Publications,1987

JC.Léon, Modélisation et construction de 
surfaces pour la CFAO, Hermes, 1991

L. Piegl, W. Tiller, The NURBS Book, Second 
Edition, Springer , 1996
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 Isaac J. Schoenberg (1946) 
 Carl De Boor (1972-76)
 Maurice G. Cox (1972)
 Richard Riesenfeld (1973)
 Wolfgang Boehm (1980)
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 For Bézier curves, the polynomial degree is directly 
related to the number of control points.

 The control of the continuity between Bézier curves is not trivial

 B-Splines are a generalization in the sense that the 
degree doesn't depend on the number of control 
points

 One can impose every continuity at any point of the curve (we will 
see later how to do that)

 They are polynomial curves, by pieces (Bézier curves have a unique 
polynomial representation along the interval of definition)

 They may provide local control
 The parametrization can be freely chosen (with Bézier, it is fixed , 

usually 0<u<1. )
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 Basis of Bézier curves :

 The support of the basis functions is the interval [0..1]
 Continuity is      , and between different Bézier curves 

it is enforced by a wise choice of the P
i 
's

 B-splines basis

 The basis functions N
i
d are piecewise polynomials

 Have a compact support + satisfy partition of the unity 
 The continuity is defined at the basis function's level.

P u=∑
i=0

d

Pi Bi
d
u 

P u=∑
i=0

n

Pi N i
d
u 

C∞
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 The basis functions B-spline are defined
 by the nodal sequence and by the polynomials degree 

of the curve

 Nodal sequence:
 It is a series of values  u

i
 (knots) of the parameter u of 

the curve, not strictly increasing – there can be equal 
values.

 ex. U={0,0,0,1,2,3,4,4,4}
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 Constuction of B-Spline basis functions
 Truncated Power Function

 It is a function of Cd-1 continuity

(u−ui)+

d
={(u−ui)

d if u≥ui

0 otherwise
u

i
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 Divided differences
 order one (similar to a simple derivative)

 order 2 : application of the above formula twice...

[ui , ui1]U f U =
f ui1− f ui

ui1−ui
U is a hidden parameter 
( variable used to differentiate)

[ui , ui+ 1 , ui+ 2]U f (U )=
[ui+ 1 , ui+ 2]U f (U )−[ui , ui+ 1]U f (U )

ui+ 2−ui

[ui , ui+ 1 , ui+ 2]U f (U )=

f (ui+ 2)− f (ui+ 1)

ui+ 2−ui+ 1

−
f (ui+ 1)− f (ui)

ui+ 1−ui

ui+ 2−ui
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 At the order k

 One assumed that 

 Properties (see Bartels, 1987)
1- In the case where 

2- if       and 

[ui ,⋯ , ui+k ] f =
[ui+1 ,⋯ , ui+k ] f −[ui ,⋯ , ui+k−1] f

ui +k−ui

ui≠ui1≠ui2⋯

ui=ui1=ui2⋯

[ui ,⋯ , uik ] f =
1
k !

d k f

d uk ∣
u=u i

ui≠ui + 1≠ui+ 2⋯ uiui1ui2⋯

[ui ,⋯ , uik ] f =
1
k !

d k f

d uk ∣
u=u*

, uiu*
uik
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3- is symmetric with respect to the knot vector

4- If f(u) is a polynomial of degree at the most equal to k , then 

is a constant with respect to the u
i
.

5- The divided difference of f=g(u).h(u) is :

[ui ,⋯ , ui+ k ] f

[ui ,⋯ , ui+ k ] f

[ui ,⋯ , uik ] f = ∑
j=i

j=ik

[ui ,⋯ , u j ] g ⋅[u j ,⋯ , uik ]h



183

Computer Graphics

B-Splines

 Divided differences and B-Splines

 How to cancel quadratic terms ?
→ subtract adjacent truncated power functions.

(u−u0)+
2

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk )+
2

(u−u1)+
2
−(u−u0)+

2

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk )+
2

(u−uk )+
2
−(u−uk −1)+

2

u
k-1

last term remains
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 Problem, lower order terms are dependent on k 

But, dividing by                  yields a divided difference :

(u−uk )+
2
−(u−uk −1)+

2

uk−uk −1

=[ uk −1 , uk ]U (u−U )+
2

(uk −uk−1)

(u−uk)+
2
−(u−uk−1)+

2|u>uk
=0⋅u2

+(uk−uk−1)⋅u+(uk−uk−1)(uk +uk −1)⋅1

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk )+
2

u
k-1

last term remains

[ uk−1 , uk ]U (u−U )+
2

[ u0 , u1 ]U (u−U )+
2
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 Now, cancel linear terms …

 Same procedure : subtract adjacent terms.

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk )+
2

u
k-1

last term remains

[ uk−1 , uk ]U (u−U )+
2

[ u0 , u1 ]U (u−U )+
2

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk )+
2

u
k-1

Two last term remains

[ uk−1 , uk ]U (u−U )+
2

[ u1 , u2 ]U (u−U )+
2
− [u0 , u1 ]U (u−U )+

2
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 Again, lower order terms are dependent on k 

Dividing by                yields again a divided difference :

[ uk−1 , uk−2 ]U (u−U )+
2
−[uk , uk−1 ]U (u−U )+

2

uk−uk−2

=[uk−2 , uk−1 , uk ]U (u−U )+
2

(uk −uk−2)

[uk −1 , uk−2 ]U (u−U )+
2
−[uk , uk −1 ]U (u−U )+

2|u>uk

=0⋅u+((uk +uk −1)−(uk −1+uk−2))⋅1=(uk−uk−2)⋅1

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk )+
2

u
k-1

Two last term remains

[ uk−1 , uk ]U (u−U )+
2

[u0 , u1 ,u2]U (u−U )+
2
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 Now, cancel constant terms …

 Same procedure : subtract adjacent terms.

u
0

u
1

u
2

u
3

u
k-2

u
k

(u−uk )+
2

u
k-1

Three last term remains

[ uk−1 , uk ]U (u−U )+
2

[ u1 , u2 ,u3 ]U (u−U )+
2
− [u0 , u1 , u2 ]U (u−U )+

2

u
0

u
1

u
2

u
3

u
4

u
k

(u−uk )+
2

u
k-1

Two last term remains

[ uk−1 , uk ]U (u−U )+
2

[u0 , u1 ,u2]U (u−U )+
2
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 There are no lower order terms. However we might 
divide anyway by                  to remain consistent and 
get again an expression as a divided difference...

[ uk−2 , uk−1 , uk ]U (u−U )+
2
−[ uk−3 , uk−2 , uk−1 ]U (u−U )+

2

uk −uk−3

=[uk−3 , uk −2 , uk −1 , uk ]U (u−U )+
2

(uk−uk −3)

u
0

u
1

u
2

u
3

u
k-2

u
k

(u−uk )+
2

u
k-1

Three last term remain

[ uk−1 , uk ]U (u−U )+
2

[u0 , u1 ,u2 , u3]U (u−U )+
2 [ uk−2 , uk−1 , uk ]U (u−U )+

2
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 The sign is alternating with the degree. Shape function 
of even degree are negative, while SF of uneven 
degree are negative.

 Multiplying by              makes every SF positive.
 To ensure that the SF form a partition of unity , we 

have to multiply again by 
 The compact representation of the B-Splines basis 

functions of degree d with the use of divided 
differences is  therefore :

(−1)
d +1

N i
d
=(−1)

d+1
(ui +d+1−ui)[ui ,⋯ , ui+d +1]U (u−U )+

d

(ui+d +1−ui)
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 Proof of the partition of unity : consider the second last 
operation (the cancellation of constant terms)

 We subtract consecutive terms to form the final shape functions
 Partition of unity means the sum of all the final shape functions is 

equal to 1… that this is indeed the case only on a certain range of u.

u
0

u
1

u
2

u
3

u
4

u
m-2

u
m-3

[um−2⋯um]U (u−U )+
d

+
-
+

-
+

-
+

-
...

u
m-1

u
m

1

More generally, there is 
partition of unity for              
, m+1 being the number of 
knots in the knot vector

ud≤u≤um−d

[u0⋯um]

K [um−d−1⋯um ]U (u−U )+
d
≡N m−d−1

d
(u)N 0

d
(u)
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 Recursive definition of basis functions
 Setting

(nodal sequence)
 The functions are such as :  (recurrence formula of 

Cox – de Boor)

 Where u
i+d 

- u
i
=0, necessarily 

By convention, we set in this case           when the 
limit is undefined.

U ={u0 ,⋯ , um} , ui≤ui1  , i=0⋯m−1

N i
d
u=

u−ui

uid−ui

N i
d−1

u 
uid1−u

uid1−ui1

N i1
d−1

u

N i
0
(u)={1 if ui≤u< ui+ 1

0 otherwise

0
0

=0

N i
d−1

u≡0
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 Example : computation of basis functions of 
degree        for U ={u0=0,u1=0,u2=0,u3=1,u4=1,u5=1}

N 0
0
=0

N 1
0
=0

N 2
0
={1 0≤u< 1

0 otherwise

N 3
0
=0

N 4
0
=0

d ≤2

N 0
1
=0

N 1
1
={1−u 0≤u< 1

0 otherwise

N 2
1
={u 0≤u< 1

0 otherwise

N 3
1
=0

N 0
2
={(1−u)

2 0≤u< 1
0 otherwise

N 1
2
={2 u (1−u) 0≤u< 1

0 otherwise

N 2
2
={u2 0≤u< 1

0 otherwise

Bernstein polynomials of degree 2

N 0
1
u=

u−u0

u1−u0

N 0
0
u 

u2−u

u2−u1

N 1
0
u 

0
0

=0

by convention
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 The Bernstein polynomials of degree d are a 
particular case of the B-splines basis

 They correspond to a nodal sequence 

 Bézier curves are therefore a particular case of B-
splines.

 It is also possible to transform any B-spline into a 
sequence of Bézier curves – because the Bernstein 
polynomials form a complete basis of polynomials of 
degree d.

U B={u0=0,⋯ , ud =0,ud1=1,⋯ , u2 d1=1}
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 Basis functions and control points
 In contrary to Bézier curves, the number of control 

points is not imposed by the degree d
 Let m+1 the number of knots. We have n+1 

independent basis functions at our hands
 For every basis function, we associate a control point

 The number of control points is fixed by the relation  
n+1=m-d

P u=∑
i=0

n

Pi N i
d
u 
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 Types of nodal sequence...
 Uniform –  The gap between two successive knots is constant

 Periodic  - The gap between the knots at the start of a nodal 
sequence is identical to the one at the end of the nodal sequence

 Non uniform, interpolating – first and last control point are interpolated

In the sequel, except where indicated, we consider non 
uniform nodal sequences interpolating the first and last 
control points.

U ={a ,⋯, a
d1

, ud1 ,⋯ , um−d −1 , b ,⋯, b
d1

}

U ={u0 , u1 ,⋯ , um−d −1} , ui1−ui=k

U ={u0,⋯ , ud
d1

, ud1 ,⋯, um−d−1 , u ' 0,⋯ , u ' d
d1

} , u ' i−ui=k
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U ={0,
5
6

,
10
6

,
15
6

,
20
6

,
25
6

,5} d=0 m1=7 n1=6
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U ={0 ,0 ,1 ,2 ,3 ,4 ,5 ,5} d =1 m1=8 n1=6
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U ={0 , 0 , 0 ,
5
4

,
10
4

,
15
4

,5 , 5 ,5} d =2 m1=9 n1=6
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U ={0 , 0 , 0 ,0,
5
3

,
10
3

,5 , 5 ,5 ,5} d=3 m+1=10 n+1=6
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U ={0 , 0 , 0 ,0,0 ,
5
2

, 5 ,5 ,5 ,5 ,5} d=4 m1=11 n1=6
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U ={0 , 0 , 0 ,0, 0 , 0 ,5,5 , 5 ,5 ,5 ,5} d =5 m1=12 n1=6
Bernstein polynomials (with a factor on u)



204

Computer Graphics

B-Splines

 Properties of B-spline basis functions 
                 outside the interval
 Inside the interval                , at most d+1 functions

           are non zero : 
                                      (always positive)
 For                                                  (forms a partition of 

unity)
 All derivatives of           exist inside the

interval              . At a knot ,           is d-k times 
differentiable, k being the node multiplicity.

 Except for d=0,            reaches exactly one maximum

N i
d
u=0 [ ui , ui +d+1[

[ ui , ui +1 [
N *

d
(u) N i−d

d ,⋯ , N i
d

N i
d
(u)≥0 ∀ i , d  and u

u∈[ ui , ui +1 [  , ∑
j=i−d

i

N j
d
(u)=1

N i
d
u

[ ui , ui1 [ N i
d
u

N i
d
u
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U ={0 , 0 ,0 ,0,1 , 2 ,3 ,4 ,5 ,5 ,5 ,5} d=3 m1=12 n1=8
The knot u=3 is of multiplicity 1
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U ={0 , 0 , 0 ,0,1 , 2 ,3 ,3 ,5 ,5 , 5 ,5} d =3 m1=12 n1=8
The node u=3 is of multiplicity 2
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U ={0 , 0 , 0 ,0,1 ,3 , 3 , 3 ,5 ,5 ,5 ,5} d=3 m1=12 n1=8
The node u=3 is of multiplicity 3
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U ={0 , 0 , 0 ,0,3 ,3 ,3 , 3 ,5 ,5 ,5 ,5} d =3 m1=12 n1=8
The node u=3 is of multiplicity 4

Curve 1 Curve 2
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 The characteristics of basis functions involve that 
the B-Spline curve

  
 interpolates P

0
 and P

n
 ,(only if the nodal sequence 

admits d+1 repetitions at the start and at the end !)
 is invariant by affine transformation ,
 is contained by the convex hull of the control points 

(because P(u) is a linear combination of the control 
points with positive coefficients which sum to one)

P u=∑
i=0

n

Pi N i
d
u  U ={u0 ,⋯ , um} , ui≤ui1  , i=0⋯m−1
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(Following)
 Is variation diminishing : The number of inflexion 

points is lower than the number of wiggles of the 
characteristic polygon

 Is closed and convex if the characteristic polygon is 
closed and convex, 

 Is of length shorter or equal than that of the control 
polygon.

 Is invariant by linear transformation of the nodal 
sequence u'=au+b , a>0
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 Control points, degree and nodal sequence
 We associate a control point for each basis function 

N
i
* . We have n+1 control points.

 The degree d is chosen by the user.
 The nodal sequence (that defines the intervals of the 

parameter on which the curve has a unique 
polynomial definition) is then built. We have 
m+1=n+d+2 knots (with d+1 repetitions at the start and 
at the end)

 there remains n-d values of the parameter to set (without taking into 
account the boundaries)
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 Geometric examples
 Constant number of control points
 We increase the degree 
 Uniform repartition of knots (except at the boundaries)
 For which degree do we have the best approximation 

of the control points ??
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Degree 1
0 0 0.0833333 0.166667 0.25 0.333333 0.416667 0.5 0.583333 0.666667 0.75 0.833333 0.916667 1 1 
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degree 2
0 0 0 0.0909091 0.181818 0.272727 0.363636 0.454545 0.545455 0.636364 0.727273 0.818182 0.909091 1 1 1 
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degree 3
0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 1 
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degree 4
0 0 0 0 0 0.111111 0.222222 0.333333 0.444444 0.555556 0.666667 0.777778 0.888889 1 1 1 1 1 
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degree 6
0 0 0 0 0 0 0 0.142857 0.285714 0.428571 0.571429 0.714286 0.857143 1 1 1 1 1 1 1 
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degree 10
0 0 0 0 0 0 0 0 0 0 0 0.333333 0.666667 1 1 1 1 1 1 1 1 1 1 1 
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degree 12 (Bézier)
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 
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 Impose interpolation points (and C
0 
continuity  )

 It is the same as positioning knots of multiplicity d in 
the nodal sequence

 One could also repeat d control points...(not shown 
here)
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degree 3 
0 0 0 0 0.1 0.2 0.5 0.5 0.5 0.7 0.9 0.9 0.9 1 1 1 1 

u=0

u=0.1

u=0.2

u=0.5

u=0.7

u=0.9

u=1
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degree 3 (4 Bézier curves of continuity C
0
) 

0 0 0 0 0.1 0.1 0.1 0.5 0.5 0.5 0.9 0.9 0.9 1 1 1 1 

u=0.1

u=0.5
u=0.9

u=0

u=1
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degree 3 (3 Bézier curves of continuity C
0 
+ 1 bspline deg 3 with 4control pts) 

0 0 0 0 0.1 0.1 0.1 0.4 0.4 0.4 0.8 0.8 0.8 0.9 1 1 1 1 

u=0.1

u=0.4
u=0.8

u=0

u=1

u=0.9
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 And if we want to impose interpolation points and 
a certain continuity C

k
 ?

 Add / align control points in a similar way than in the 
case of Bézier curves.
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 Periodic curves
 They may be represented by modifying the nodal 

sequence and by repeating some control points.

Non-uniform nodal sequence

Uniform nodal sequence

uniform nodal sequence
and periodic curve
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degree 3 
0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 1 1 

 

non uniform nodal sequence interpolating 
the first and last control points.
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degree 3 
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 

Periodic nodal sequence
(but control points located 
in a non adequate way)
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degree 3 
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 
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degree 3 
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 
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degree 3 
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 

Periodic nodal sequence
+ control points placed in an adequate way (repeated)
= periodic curve
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 Algorithms for the manipulation of B-Splines 
curves

 Boehm's knot insertion algorithm
 Evaluation of the curve (Cox-de Boor algorithm)
 Derivatives and hodographs
 Restriction/growth of the useful interval of a curve
 Degree elevation
 Recursive Subdivision
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 Boehm's knot insertion algorithm

The idea is to determine a new control polygon for the 
same curve after the insertion of one or several knots 
in the nodal sequence.

The curve is not modified by this change : neither the 
shape nor the parametrization are affected.

Interest :
 Evaluation of points on the curve
 Subdivision of the curve
 Addition of control points
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 Let                                   a B-Spline curve built on the  
                               nodal sequence : 

 Let    a knot to be inserted
 The new nodal sequence is  :

 The new representation of the curve is :  

 The             are the basis functions defined on      , the        are the 
n+2 new control points.

 How define the        so that the shape is unchanged ?

P u=∑
i=0

n

Pi N i
d
u 

U ={u0 ,⋯ , um}

u∈[ uk , uk 1 [

U ={u0=u0 ,⋯ ,uk=uk ,uk 1=u ,⋯,um1=um}

P u=∑
i=0

n1

Qi
N i

d
u 

N i
d
u U Qi

Qi
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After algebraic manipulations... we obtain

We had :

so finally : 

Qk−d=Pk −d

Q i=α i P i+(1−αi)P i−1  for i∈{k−d +1 ,⋯, k }

Qk +1=P k

P i=Q i  for i∈{0 ,⋯ , k−d−1}
P i=Q i +1  for i∈{k +1 ,⋯, n}

Q i=α i P i+(1−αi)P i−1   with αi={
1 i≤k−d

ū−ui

ui+ p−ui

k−d +1≤i≤k

0 i≥k +1
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 Multiple knot insertions
 Assume                     of multiplicity s (             ). We 

want to insert it r times with              . 

 We note Q
i
r the control points of the r-th insertion step

 We have then :

u∈[ uk , uk 1 [
rs≤d

0≤sd

Q i
r
=α i

r Q i
r−1

+(1−αi
r
)Q i−1

r−1    with αi
r
={

1 i≤k−d +r−1
ū−ui

ui +d−r +1−ui

k−d +r≤i≤k−s

0 i≥k−s+1
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Q k−d1
1

Qk−d 2
2

Qk−d2
1

⋮ ⋮ ⋯ Q k
d

Qk −1
1

Qk
2

Qk
1

B-Splines

 The Q's can be put in a table:

 The total number of new control points is d-s+r-1 that 
replace d-s-1.
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 The use of the algorithm of node insertion up to 
multiplicity of d=r+s is such that the curve will 
interpolate the last control point that is computed.

 Therefore, one can use this algorithm to compute the 
position of a point of the curve knowing the parameter.

 It's precisely Cox-de Boor's algorithm. The sequence of points  P
i
j is 

not anything else than the  Q
i
j indicated on the graph, cf following

Q k− d1
1

Q k −d2
2

Q k− d2
1

⋮ ⋮ ⋯ Q k
d

Q k −1
1

Q k
2

Q k
1



245

Computer Graphics

B-Splines

 Case r+s=d+1 : We carry out the insertion of 
multiplicity r-1  then we insert one more knot to « cut » 
the B-spline curve in two independent parts.

 The last control point       has to be duplicated.
 Allows to extract a portion of the B-spline.

 There exists an extension of this algorithm in the 
case of the simultaneous insertion of many 
knots: it is the somewhat more complex “Oslo” 
algorithm*

Qk
d

* E. Cohen, T. Lyche, R. Riesenfeld “Discrete B-splines ans subdivision techniques in 
computer-aided geometric design and computer graphics”, Computer Graphics and Image 
Processing, 14(2):87-111, 1980.
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U ={0 , 0 , 0 ,0 ,0 , 0 , 1 ,1 , 1 ,1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 , 0 , 1 ,1 , 1 ,1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 , 0 , 1 ,1 , 1 ,1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 , 0 ,0.2 , 1 ,1 ,1 ,1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 , 0 , 0.2 , 0.4 ,1 ,1 ,1 ,1 , 1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 , 0 , 0.2 , 0.4 ,0.6 ,1 ,1 , 1 ,1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 , 0 , 0.2 , 0.4 ,0.6 ,0.8 ,1 ,1 ,1 ,1 ,1 , 1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 ,0 , 0.1 , 0.2 ,⋯ ,0.9 ,1 ,1 ,1 ,1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 ,0 , 0.05 ,0.1 ,⋯ ,0.95 , 1 ,1 ,1 ,1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 ,0 , 0.05 ,0.1 ,⋯ ,0.95 , 1 ,1 ,1 ,1 ,1 ,1}

degree 5
Local control...
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U ={0 , 0 , 0 ,0 ,0 , 0 , 1 ,1 , 1 ,1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 , 0 ,0.3 ,1 ,1 ,1 ,1 ,1 , 1}

degree 5
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U ={0 ,0 , 0 ,0 ,0 , 0 , 0.3 , 0.3 ,1 , 1 ,1 ,1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 , 0 , 0.3 , 0.3 ,0.3 ,1 ,1 ,1 ,1 , 1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 ,0 , 0.3 , 0.3 ,0.3 ,0.3 , 1 ,1 ,1 ,1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 , 0 , 0.3 , 0.3 ,0.3 ,0.3 , 0.3 ,1 ,1 ,1 , 1 ,1 ,1}

degree 5
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U ={0 , 0 , 0 ,0 ,0 , 0 , 0.3 , 0.3 ,0.3 ,0.3 , 0.3 ,1 ,1 ,1 , 1 ,1 ,1}

degree 5
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 Computation of a point on a B-Spline curve 
 By the use of basis functions

1 – Find the nodal interval in which  u is located

2 – Calculate the non vanishing basis functions

3 – Multiply the values of these basis functions with the 
right control points

 By Cox-de Boor's algorithm 

u∈[ ui , ui1 [

N i−d
d

u ,⋯, N i
d
u

P u=∑
k

N k
d
u  P k i−d ≤k≤i
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 (simplified) Cox-de Boor's Algorithm :

 What is its complexity ?
 quadratic in function of the degree d.

Determine the interval of u : 
Initialization of 
For k from 1 to d
  For j from i to i-d+k

  Endfor
Endfor
     is the point that is sought.

P j
k
= u−u j

u jd 1−k−u j
 P j

k−1
 u jd1−k −u

u jd 1−k−u j
 P j−1

k−1

P i
d

P j
0

u∈[ ui , ui1 [
i∈{d , d1,⋯ , m−d−1}
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 Example of computation

 Determination of the interval

 Iteration 1

 Iteration 2 

 Iteration 3

P0
0
=0 ,1 P1

0
=2 ,3 P2

0
=5 ,4 P3

0
=7 ,1 P 4

0
=6 ,−1 P5

0
=6 ,−2

U ={0 , 0 ,0 ,0 ,1 ,2 ,3 ,3 , 3 , 3} d =3 u=3/2

1≤3/2<2 , u4=1 → i=4

P 4
1
=(27/4 ,1 /2) P3

1
=(6 ,5/2) P2

1
=(17 /4 ,15/5)

P 4
2
=(99 /16 , 2) P3

2
=(89/16 , 45/16)

P 4
3
=(47 /8 , 77 /32)=P (3/2)

P j
k
=(

u−u j

u j+ d+1−k−u j
) P j

k −1
+(

u j +d +1−k−u

u j+d+1−k−u j
) P j−1

k−1

JC Leon
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 The algorithm is similar to De Casteljau's algorithm for 
Bézier curves

 It is built on a restriction of the set of control points (d+1 points)
 On this restriction, it is identical, except for the coefficients related to 

the nodal sequence (which is potentially non uniform)
 The complete algorithm is somewhat longer than this one

 (possibility to have 0/0 : we set conventionally 0/0 = 0 !)



267

Computer Graphics

B-Splines

 Transformation of a B-Spline curve into a 
composite Bézier curve

 We saturate each distinct knot until its multiplicity is 
equal to d.

 This is made with the help of Boehm's algorithm of 
nodal insertion.

 The curve is not modified !

 We obtain a nodal sequence which has the following 
form :

 Each distinct value of u corresponds to one of the points of the 
curve.

U ={a , a , a ,a⏟
d+ 1 times

, b ,b , b⏟
d  times

, c , c , c⏟
d  times

,⋯ , z , z , z , z⏟
d+ 1 times

}
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U ={0 ,0 , 0 ,0 ,1 , 2 ,3 ,3 , 3 ,3}

degree 3
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B-Splines

U ={0 ,0 , 0 ,0 ,1 , 1 ,2 ,3 , 3 ,3 ,3}
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U ={0 ,0 , 0 ,0 ,1 , 1 ,1 , 2 ,3 ,3 ,3 ,3}
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B-Splines

U ={0 , 0 , 0 ,0 ,1 ,1 ,1 ,2 ,2 ,3 , 3 ,3 ,3}
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B-Splines

U ={0 , 0 , 0 ,0 ,1 ,1 ,1 ,2 ,2 ,2 ,3 ,3 ,3 ,3}
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Bézier n°3      Bézier n°2          Bézier n°1
 4 CP       4 CP            4 CP
degree 3      degree 3          degree 3
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B-Splines

 Some conclusions
 Flexibility
 Low order
 Continuity
 Periodic curves
 Conics ?


