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Course outline

= |ntroduction

= |mages and display techniques
= Bases
= Gamma correction
= Aliasing and techniques to remedy
= Storage



¢ LIEGE Computer Graphics

< université

Course outline

= 3D Perspective & 2D / 3D transformations
= Go from a 3D space to a 2D display device

= Two paradigms for image synthesis

"= Representation of curves and surfaces

= Splines & co.

. = Meshes

= Realistic rendering by ray tracing

= Concepts and theoretical bases



¢ LIEGE Computer Graphics

< université

Representation of curves and surfaces
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= Curves

= |nterpolation
= Cubic Splines
= Approximation

= Bézier Curves
= B-spline Curves

= Surfaces

= |nterpolation
= Coons Patches
= Approximation

= B-splines Surfaces
= Subdivision Surfaces
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= Two useful references...

JC.Léon, Modélisation et construction de surfaces
pour la CFAQO, Hermes, 1991

L. Piegl, W. Tiller, The NURBS Book, Second Edition,
Springer , 1996
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Splines

= Goal:

= |nterpolate points (control points)

= Go through points ( interpolation # approximation)

= Ensure a certain regularity to the curve
= Simple (easy) to compute
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Splines

= Let start with the idea that we have many control
points

= Lagrange interpolation ?

= This corresponds to a unique polynomial interpolating every control
points (d+1)

= C_ Continuity
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Splines

Lagrange Interpolation
21 CP
All on a circle, with a slight perturbation
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Splines

= Motivation
Let us imagine that we have many (100's of)

control points
= But we don't want a Lagrange interpolation !

= We should stay with a low order scheme but conserve
enough freedom to pass through every point

= Curve defined by pieces ... and of low order (1)

10
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Splines

= We are going to build a low order interpolation for
each knot interval, such that we can impose
slopes at the knots.

//,/// \\\\\\\ \
v \/ E \ N\ — D
AN \\\ P_ “ — ;
P'= r\\ it l/l:l/ll
2 P=P

11



<

¢ LIEGE Computer Graphics

université

Splines

= |In each range [i,i+1], we want to have an
iIndependent polynomial

= We have 4 parameters : position at each knot
and associated tangents.

= The basis must have 4 degrees of freedom, thus be of
order 3 in the case of polynomials.

x(u,)=x,

l

Plu y(ui>:yi

.):Pl. -

1

Xo(u)=Agg+ Aut A’ + A, u€lu,,u,,,]

12
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Splines

= First, every interval has a unit length i.e.

u, —u,—1

1

= Then we ensure identical intervals [0...1] between
each interpolation point :

u—u, du

. —=1
: du

= On each interval i, we thus have the following
relation:

xg(@)=ay+ag, a+a,, 0 +a,,u , u€[0,1]

13
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Splines
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Splines

= We pass through both control points:

) — _ 2 3
0 =0)=P, = a,tay, ty+a;,iy+a;; =X,

T O
B
|

_ 2 3
1 1):Pi+1‘:’a[i}o+a[i]1u1+a[i]2”1+a[i]3”1—xi+1
= We impose both slopes :

' — —2_
,=0)=P S agy+2a, i+ 3,4y = X,

N
|

P
P

— D! y T —
1)=P', = ay,+2a;,u,+3a,,1,=x,,

1
= Atthe end :

(
drijo—X;

A —X;

a[i]2:3(xi+1_xi)_2x;'_x'z'+1

\a[i]3:2(xi_xi+1)+x;'+x;'+l

15
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Splines
We have continuity

We have continuity of the derivatives

But how to choose the slopes ?

= Let the user choose ( “artistic” freedom)
= Automatically ...

A

16
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Splines

= By finite differences with three points :

x'.: Xip1— X n X~ X
| 2<ui+1_ui) 2<ui_ui—1)
= At the boundaries, we use finite differences (asymmetric)
x'():xl_xo x'n_lzxn—l_xn—Z
u,—u, U, —u,_,

= The result depends on the parametrization !

= Cardinal spline -

T p)xm_x,.l iy Ro=(imeln=x)
x.=(l—c , <c< :
l 2 'xn—1:<1_c>(’xn—l_'xn—2)

= cis a « tension » parameter. ¢=0 gives yields the so called “Catmull-
Rom” spline, c=1 a zigzagging line.

17
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Splines

Continuity of the curve/paramet
but loss of regularity (and of geometric continuity
in many cases)

5 points, finite differences by varying the parametrization
[0..1],[0..2],[0..5], [0..10]

18
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Splines

5 points, Cardinal Spline (Catmull-Rom) ¢=0

19
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Splines

Catmull-Rom Splines are widely used in computer
graphics
= Simple to compute, effective
= Local control (price to pay : discontinuous sec? derivative)

= Animations with keyframing
= Ensures a fluid motion because of the continuity of the slope

20
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Splines

5 points, Cardinal Spline ¢=0.25

21
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Splines

5 points, Cardinal Spline ¢=0.5

22
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Splines

5 points, Cardinal Spline ¢=0.75

23
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Splines

5 points, Cardinal Spline ¢=1.0

24
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Splines

= We can impose the continuity of second derivatives...

= On a curve with »n points, we have n extra relations to impose

= We may impose the continuity of the second derivative only on the »-2
interior knots

What about the 2 points on the boundary ?

= |Impose a vanishing second derivative.
We obtain what is called « natural spline »

= We could also impose the slopes (i.e. only n-2 relations remaining)
= Or, impose that the third derivative is zero on the points 1 and »n-2

= That means a single polynomial expression for the first two knot
intervals, and the last two.

25
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Splines

= Natural Spline : mathematical approximation of the
spline historically used in naval construction.

100gad ‘D

26
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Splines

3uroog
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Splines

= We impose the continuity of the second derivatives

x[i—1]< 1 )Zx[.](())@ 2a[i—1]2+6a[i—1]3:2a[i]2

= We substitute in the “internal” equations

203 (x,=x,) =2, —x ]+ 6[2(x,, —x )+ x,_ +x ]
=2[3 (04— 2,)=22,= x|

= Finally we obtain :

X, +Ha4x+x,,=3 (xi—l—l_xi—l)

28
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Splines

= At the boundaries we want

X((0)=0<2a,=0 2 x,+x,=3(x,—x,)
x[n_z](l)=O©2a[n_2]2+6a[n_2]3=0 Xy o t2x, 1=3(x, —x,,)

= We have then a linear system with » unknowns :

2 1 x'o 3(x1—x0)
1 4 1 X, 3(x,—x,)
1 4 1 x, || 3(x;—x,)

o —

29
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Splines

= By solving the system, we have :

X, f

. Aiijo—X;
X, .
. L . . 1A —X;
X, , Which is substituted in C
: a[i]2:3<xi+1_xi>_2xi_xi+1
X, 5 ka[i]3:2(xi_xi+1)+xi+xi+l
x;a—l

,to get the polynomial in each portion :

xg(@)=ag g +ta,, d+a,,u +a,,u , 0<u<l

From the global parameter u, we have to find in which portion we are

( the value of i ) , then compute right polynomial... 30
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Splines

Catmull-Rom spline

5 control points, natural spline

31
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Splines

= An experiment

= We approximate a circle by a number of increasing
points

= Simultaneously , the-erderofthe-approximation- the
number of pieces increases.

= In all the cases, the curve is €_C,

32
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Splines

3 points, order 3!

33
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5 points

Computer Graphics

Splines
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11 points

Computer Graphics

Splines
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21 points

Computer Graphics

Splines
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Splines

= Random perturbation

= Each point is moved radially by a value between -0.5
and +0.5 % of the circle's radius

37
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Splines

3 points, random perturbation 1%

38
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Splines

5 points, random perturbation 1%

39
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Splines

11 points, random perturbation 1%

40
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Splines

21 points, random perturbation 1%

41
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Splines

= Deterministic perturbation

= Each point is shifted radially depending on its position
by -5 or +5 % of the circle's radius

42
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Splines

3 points, deterministic perturbation 5%
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Splines

5 points, deterministic perturbation 5%
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Splines

11 points, deterministic perturbation 5%

45
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Splines

21 points, deterministic perturbation 5%

46
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11 points

Computer Graphics

Splines

non
local
control

47
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Computer Graphics

Splines
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Splines

= Perturbation of a point

= We shift one point by a significant amount

49
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21 points

Computer Graphics

Splines
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99 points

Computer Graphics

Splines
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999 points

Computer Graphics

Splines
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Splines

= Stable interpolation scheme
= Weak Runge phenomenon

= The displacement of a point yet affects all the
curve

= Nevertheless, the perturbation fades very quickly
further away from the shifted point

= « Overshoots » are limited.

53
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Splines

= Closed curve ?

= The curve can be closed, just impose everywhere that
the second derivative is continuous.

54
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= |nstead of

n

x11(0) =0 2, =0

Splines

X,-2(1)=02a, ,,+6a;, ,;=0

.. We have
x[n—2] ( 1)

Circulant
matrix

4
|

|
4
1

1
4 1

—_ A

1

S —

= X[O](O) <2a, ,,+0a, ;=23

3(’x1_'xn—2)
3(x2—x0>
3(x3.—x1)

3<xn—2_xn—4)
3(x0_xn—3>

and

n—1

55
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Splines

= 3D Curves

= Minimal order so that a curve can have a torsion (non
planar curve)

= Let's consider a Lagrange interpolation P(u) :nZi Pilzp<u)
= 2 points — on a straight line (no curvature) i=0

= 3 points — in a plane (no torsion)

= 4 points — torsion becomes possible

= Minimal order to join smoothly two arbitrarily oriented
curves =3

67
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Bézier curves

68
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Bézier curves

= Bézier curves

= Pierre Bézier (1910-1999)

= Develops UNISURF —
first surface modelling software
at Renault's (1971)

= Publicizes the theory under his name in 1962...
however, the principle was discovered in 1959 by Paul
de Casteljau (at Citroen's) | Because of the “culture of
secret” at Citroen, De Casteljau will have his works
recognized only in 1975.

69
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Bézier curves

= Use of Bézier curves :

= Postscript fonts (cubic Bézier) & TrueType (quadratic
Bézier)

AaBb(Cec

= Computer graphics

= |n geometrical modelling and CAD, they tend to be
replaced by more general techniques (NURBS)

70
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Bézier curves

= Modelling by interpolation is not very practical

= We seldom have interpolation points at our hand

= |nstead, we hope to define these points as the result of a modeling
process instead of as an input data

= Approximation gives more freedom in the design of
the curve

71
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Bézier curves

Elements of a Bézier curve :

n=d+1 control points

Control Polygon
with d=n-1 sides
(also called
characteristic

polygon)

/
/

/

Bézier curve

For Bézier curves,
the notion of knot
1s trivial :

u,—0 u,=1

72
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Bézier curves

= Characteristics of Bézier curves

= More freedom than interpolation
= Any degree
= Precise control of the curve's shape
= Numerical stability even with high degree (not as Lagrange !)

Plu)=Y. P,B!(u

= The le (u Jare Bernstein polynomials (Sergei N. Bernstein, 1880-1968 -
don't mistake for Leonard Bernstein...:) :

= They form a complete polynomial basis
= They are a partition of the unity
= We sometimes call them blending functions

= The curve is described as one polynomial (unlike splines)
73
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Bézier curves

= Bernstein polynomials

(u)=

d

l

T

ui<1_u)d—i

Binomial coefficients

74
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Bézier curves

= Binomial coefficients : computed with Pascal's
triangle
d=0 1 d|_[d—1
Haw

HENREEN 4]

+

d—1
i—1

i (d—i)li!

1=0 ] 2 3 4 5 75
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Bézier curves

= Bernstein polynomials

Binomial coefficients

a:7 u' (1—u)'™
i

I=[(1—u)+ul'=[4+B]’ :Zd: (c?)Aini :;)
-3 5w

= By design, they form a partition of unity...

76
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Partition of unity

= Property of affine invariance

It is a useful property that the curves we define for a
set of control points can undergo linear affine
transformations.

= Let P the affine transformation of the control points P,

= Let P'(P) the affine transformation of the points of the curve P(P)
defined from the original points P,

= Let P(P’) the new curve based on the modified control points P,
with the same parametrization.

The affine invariance is verified iff P'(P) = P(P;) for all
u.

77
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Partition of unity

= Affine transformations &¢(P)=A-P+u
Translation\ ' 10 0
Scaling u=\p| ; A=|0 1 0
, C 0 0 1
3 rotations " ' .d'
0 O
Shear u=0 - A=l0 o 0
\ | | O O f
1 g h :
0: A=l0 1 i c0s® —sin® 0
00 1 u=0 ; A=|sin0 cos® Of-
| 00 1

= 12 degrees of freedom
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Partition of unity
Let P a parametric curve built this way :
Pu)=Y P.K"(u)
0

= Let's verify the invariance by a translation .

n—1 n—1 n—1
P(P)=Y (P K (uw)=3 P, K (u)+ 3 1 K (u)
0 0 0
n—1
=P(u)+ ), tK}(u) Partition of unity
0 )///

=P(u)+t=P (P, iff Z_:l K (u)=1

79
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Partition of unity

= For the other multiplicative transformations
n—1 n—1
P(P])=2.(A-P)K}(u)=A-2, P,K}(u)
0 0
=A-P(u)=P(P))

(no particular conditions except linearity with respect to
the control points coordinates)
Consequently, iff the basis functions form a partition of

unity, and the dependence with respect to the control

points is linear, the representation is invariant by any
affine transformation.

80
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Bézier curves

= Some characteristics of the B. polynomials.
= BY(u4)=0 if i< 0 or i>d
- 0)=9., and BY(1)=9.,

u) has a root of multiplicity i for u=0

u)=0 for ue|0,1]

B

(u)

"(u) has a root of multiplicity d-i for u=1
(u)

(1—u)=BY%_(u) (symmetry of the basis)

" B'=d|B! ) (u)-B! ()
‘() has a unique maximum at u=i/d

g

sy
\|TI\.
=
oy

BY(ild)=i"d “(d—i)""
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Bézier curves

= Demonstration of B/ (u)=d|B (u)— B! (u)]

Bzd< )_d(d—ll)u(zl)<1_ )dl_d(dzl uz(l_u)(d—l)—z
j —
d B} (u) d B} (u)

QED 82
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Bézier curves

= Recurrence relations of Bernstein's basis

B} (u)=(1=u) B (u)+u B (u)

By(u)=uBy_(u)  Bj(u)=(1-u)B; ' (u)
... but no practical interest other than demonstrating

algebraic relations (cf. following)
= These polynomials are usually not computed explicitly

83
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Bézier curves

= Demonstration of the recurrence relations

B (0)={ o/ (1=~ Al 4]
I I I i—1
:(dfl .ui(l_u)d—i_l_ 6?—1 .ui<1_u>d—i
I i—1
. d—1 i (d—1)—i d—1 (i—1) (d—1)—(i—1)
—(1—4)- _ . : 1 —
(1—u) ; u' (1—u) + u i—l)u (1—u)

(1=u)-B{ ' (u) u-B;, (u)

84
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1 I I I T

= Degree 4
= No negative values

Therefore, no value
above 1!
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1 I I I T

= Degree 20 |\
= No extreme values

Therefore, no value
above 1!

= Existence of a limiting ( )
envelope 06 |- e\

_ 1
e(u)_\/2dﬂ:u(1—u)

08 H

04 :
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oy
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Bézier curves

= The characteristics of Bernstein polynomials
iInvolve that the Bézier curve

P(”):g Pi87<”>

= interpolates P et P,

= is invariant by affine transformations ,

= |s contained in the convex
hull of its control points

(because P(u) is a combination
with positive coefficients of
control points — also called
convex combination) ,

87
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Bézier curves

(following)

= is variation diminishing : the curve has less inflexion
points (wiggles) than there are undulations of the
characteristic polynomial (proof by the fact that a
Bézier curve is obtained by recursive subdivision, see
further ) ,

= delimits a closed convex domain if the control polygon
itself is convex and closed...

= |ts length is smaller than that of the control polygon.

88
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Bézier curves

= Same examples as shown earlier on Lagrange
interpolation

= Circle with an increasing number of points
= Perturbation of the control points

89
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Bézier curves
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Computer Graphics

Bézier curves
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Computer Graphics

Bézier curves
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Degree 20

Computer Graphics

Bézier curves

93
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Bézier curves

= When the number of control points increases, the
curve tends to the control polygon (under the

assumption that the control polygon itself converges to
a smooth curve ... )

= The approximation involves a substantial error
between the curve and the control points

= However, an interpolation is not the objective here...

94
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Bézier curves

= Perturbation of a point
= We shift the indicated point

95
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Computer Graphics

Bézier curves

/SN
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Computer Graphics

Bézier curves
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Degree 20

Computer Graphics

Bézier curves
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Bézier curves

= Editing Bézier curves

= Degree elevation

= Computation of points on the curve (De Casteljau's
algorithm and others )

= Changing the range of a curve
= Cutting, extension
= Curves defined by pieces and recursive subdivision

99
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Bézier curves

= Degree elevation

= A curve of degree d+1 is able to represent any curve
of degree d

= |f there aren't enough control points to design a given
shape, the degree may be increased...

= New control points must be determined (one more !)
= Forrest's equations [1972]

Q=P

Q.= i P, +(1— J P fori=1,---,d
i d+1 i—1 i

d+1
Q,=P,

100
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Bézier curves

o Demonstratlon of Forrestﬁs l’uons

ZPZBZ l
i=0

=0

O(u)=P(u) Vuel0,1]  Q=f(P,..P,)

~.

= Let's express B¢(u)in function of B/*'(y)

ui(l_u)d—i

_ d+1 ui(l_u>d—i+1:(l_u)

101
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d+1
d+1 d+1| i+ d—i i+1)
: — — — B
Bl+1 (M) l+1 u (1 M) u d l<u>
l
» We replace the terms of the binomial (4 |—-__ 4!
i] (d—i)li!
d+1|__ (d+1)! (4| d+]1
i (d+1—i)ti! \i]d+1—i
d+1|_ (d+1)! _[d|d+1
i+1) (d—i)!(i+1)! i) i+l
Bf.“l(u):(l—u) d+1 Bd(u) B?’:ll(l/l):lxld-l-lB?(u)

d+1—i i+1 102
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Bézier curves

= We split up B¢ (u) —» B (u)=(1—u) B! (u)+u B’ (u)

I

d _d+1—l d+1 l+1 d+1
= d d+1—1i i+ i+1 L a+1
d+1 - + +
0u)=r(u)=3 05" (=3 P[ L1 5 ) L 515 )

103
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Bézier curves

= Degree elevation in practice ...

/SN

Degree 4

104
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Bézier curves

Degree 5
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Bézier curves

Degree 6
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Bézier curves

Degree 7
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Bézier curves

Degree 8

108



:; LIEGE Computer Graphics

université

Bézier curves

Degree 9
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Bézier curves

Degree 21
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Bézier curves

= De Casteljau's algorithm

= Allows the robust construction of points on the curve
= Very simple geometrical interpretation

111
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Bézier curves

= Principle of De Casteljau's algorithm

= Construction of the centroids P. of the control points

O L
P P;=(1—u)P}+uP),,
* We continue with p?
= As far as possible, until only one control point remains, Pd

That control point is P(u). 0

/
J
Pn’\ P
/ P X f%
| N T

P P; P 112
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Bézier curves

= Kig

P3

113
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Bézier curves

= The algorithm is :

Initialization of
Forj from 1 to é)i
For i from O to d-j

Pl=(1-u)P/ ' +uP/ ]
EndFor

EndFor
P is the point we want.

= What is its complexity ?

= Consists of 3d(d+1) multiplications
and 3d(d+1)/2 additions , so quadratic with respect of
the the degree d.
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= Demonstration with the help of recurrence
relations Bc.l(u):(l—u)Bd_l(u)+uBfl__ll(u)

d I i

P()=2, P,B{(u)  B(u)=uB'"'(u) B(u)=(1—u)B' ' (u)

= P(u)=2, P((1—u) B (u)+u B (u))
By gathering the terms B¢ '(u) :
d—1
B (u)

i=0
by setting P/=(1—u)P'+upP’,,— =P(u)=) P

i+1
i=0

P(u)zz [(1—u)Pi+uP

i+1

B (u)

I
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d—1
= We do it again with P(u)=) P! B/ (u)

d—2

Pu)=Y. PH(1=u) B (u)+ u B ()

+ Po(1—u) By (u)+ Py_yuByy(u)

P(u)=Y.|(1=u) P} +uP)

i+1

By (u)
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= Evaluation with Horner's method

= We rewrite the polynomials to a monomial form

ZPB )=2, a;u

U

—d d 0
d(d—1) dld—1) d(d—1)
(a,)=M ,(P,) M= 2 2
—17'd  d(d—1)
—14 1974 _1d—2d(d_l)

0

117



¢ LIEGE Computer Graphics

< université

Bézier curves

= Complexity of Horner's method :

= 3d multiplications + 34 additions ... without taking into
account the change of polynomial basis (to be done

only once) (a,)=M,(P,)
= But : change of the internal representation

= Some authors have shown that numerical errors introduced during
the change of internal representation are substantial.
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= Method based on Bernstein polynomials

d

= We factor the terms (1—u)*""in B (u)=|“ |u'(1—u)"""
l

d
=> P,B!(u)=(1— udZP
i=0

= This is a monomial form that can be evaluated with
Horner's method — without any change of the internal
representation (points P, )

i

1 u

= But beware when u — 1 !l

= We'd rather factor rather the terms , Th?}i gives :

P(u):;) PiB;f(u):ud;) P,.(C;’

d—i
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= To summarize :

d
(1—u)' . P,

P(u) ) =0
WL
i=0 !
(d
1

(l_u)d(Po P, Pd) d

Bézier curves

[\

QU X

<
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= Algorithmic complexity of the vectorial method

= Requires 6d multiplications and 34 additions.
= No change in the internal representation
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250

= Choice of algorithm ?

= Robustnhess

= 1 De Casteljau
= 2 Vectorial
= 3 Horner

= Speed
= 1 Horner

= 2 Vectorial
= 3 De Casteljau *

200

150

100

Total flops_,

[}

Computer Graphics

Bézier curves

-
- -
- e
= -
-
-
-

De Casteljau

-
-
-
-
-
-

Vectorial .-

-
-
-

-

-
-
-
-

-
-
-

10
122



¢ LIEGE Computer Graphics

< université

Bézier curves

= |n practice

= The vectorial algorithm is often used to quickly
compute points for display purposes

= De Casteljau's algorithm is used for increased
robustness and ...
= |t allows to obtain derivatives of curve (see later...)
= |t allows interesting geometrical operations (see later ...)

= |f many points are to be computed, it may actually perform well (see
later !)
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= Restriction of a curve (cutting)

= Let us compute the intersection of two curves

= We need a independent representation of each segment
= One wants 0<u<1 on each segment
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= Let us start from De Casteljau’'s geometrical
construction

P:
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= Let us start from De Casteljau’'s geometrical
construction

= The control polygon of the both parts is obtained from

points coming from De Casteljau's algorithm !
126



¢ LIEGE Computer Graphics

université

Bézier curves

= Curve to trim
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= For a curve that we want to trim :

1 — Compute the intersection point /, — at u=u, with help
of De Casteljau's algorithm — this gives the points P/

128



¢ LIEGE Computer Graphics

< université

Bézier curves

1 — Compute the intersection point /, — at u=u, with help
of De Casteljau's algorithm — this gives the points P/
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= For a curve that we want to limit :

1 — Compute the intersection point /, — at u=u, with help
of De Casteljau's algorithm — this gives the points P/

2 — Among these points, consider the points P/ : they

are vertices of the characteristic polygon of the curve's

restriction at the interval P-I, and the new

parametrization is u'=u/u,
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= 2 — Among these points, consider the points P/ : they

are vertices of the characteristic polygon of the curve's

restriction at the interval P/, , and the new

parametrization is u"‘zu/ué 4+

u=0 wu*=0 \+
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= For a curve that we want to limit :

1 — Compute the intersection point /, — at u=u, with help
of De Casteljau's algorithm — this gives the points P/

2 — Among these points, consider the points P/ : they

are vertices of the characteristic polygon of the curve's

restriction at the interval P-I, and the new

parametrization is u'=u/u,

3 — Calculate the intersection I, on the new curve — at
u=u - gives the points P/
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3 — Calculate the intersection I on the new curve — at
u=u - gives the points P/
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= For a curve that we want to limit :

1 — Compute the intersection point /. — at u=u, with help
of De Casteljau's algorithm — this gives the points P/

2 — Among these points, consider the points P/ : they

are vertices of the characteristic polygon of the curve's
restriction at the interval P -1, and the new

0 "1°
parametrization is u"=u/u

3 — Calculate the intersection I, on the new curve — at
u=u, - gives the points P/

4 — Consider the points P"¢ : vertices of the

characteristic polygon of the curve's restriction to the

interval I -1, : new parametrization is u'=(u"-u" )/(1-u*) "*
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4 — Consider the points P" ' : vertices of the

characteristic polygon of the curve's restriction to the
interval / -/ : new parametrization is u'=(u"-u" )/(1-u" )
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= With the same algorithm, we can increase the
parametric domain of a curve

= |ntersection with objects close but not touching the
curve's extremities

= Beware : Bézier curves are variation diminishing and
convex combinations only when 0<u<1...
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u=0.8

/K u=0.1
L

Desired cutting points
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Cutting for u=0.8

139



¢ LIEGE Computer Graphics

université

Bézier curves

Cutting for ©=0.8...and for #=0.1 (at ©*=0.1/0.8)
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Extension for u=1.1
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Extension for u=1.1 and cutting for 4=0.1 - at (new

parameter) ' =0.1/1.1 ... 142
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= Curves defined by pieces

= Beézier curves do have a global control

= |f we need local control, we have to assemble several
of them

= We have to impose some continuity at the interface points between
curves

+ +

-+ 143
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= Expression of the derivatives of a Bézier curve
d
= P8 (w) with B'=d(B!(w)-B"(w)]
u

fl_];(u):d ; P,|BI (u)-B " (u)

l

d—1
- By factoring & (u),

dP < .
d—<”):dz (Pi+1_Pi)B;l 1(”)
u i=0

P=P.~P

l
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~ P
d\W °
. . . P(u)
= First derivative

d—1
P (u)=d Y. (P,,,~P)B " (u) P P
du i=0
' N
dP < . d—1 !
—(u)=d P.B
G w=d X PB! () /
/
= The control points P', and P' g ’
are interpolated so the first derivative O 1dp

at the extremities only depends

on the two first (resp.
last) control points

2 P’O
First hodograph 14
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= Second derivative = derivative of the derivative

d’ P = "
! "\ pd—2 ,
2 (”):(d—l)dz <Pi+1_Pi)Bi (”) p . P,
du =0 i %
N
2 d—2 P :
.. 2 P \
4L (0)=(d-1)d Y. P'B!*(u) o
du i=0 ,
= The control points P" and P" ... g
are interpolated, so the second derivative at P’

the extremities only depends on
the three first (resp. last)

. 2
control points Il d'p

d(d—1) du’

(u)

X Second hodographs
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= Derivative of order k&

d_P (u)=(d—k+1)-(d— 1)ddf (PYY— P BIR (w)

duk — i+1 i i
d“P - d—k
k) pd—k k k-1 k-1
Ik (u):H(d—Hl)Z POB ), PR=(p%P_pih)
u =1 i=0 — (P(k—Z)_zp(k_z)_l_ P(k_z))
i+2 i+ 1 i
k
* The derivative of order k at =y (_l)j(d)P(Q)'
the extremities only depends on the = jl

k+1 first (resp. last) control points.

= Of course, there must be enough control points ...
(k<d+l)
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= Connecting two curves is the same as imposing
constraints on the control points on both sides of the
« sticking » point

= We assume that the curves are regular

= G, continuity (positions) (same as C, continuity)

P1+ +P2

2 154
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= G, continuity ( C, continuity is more strict)

= Minimum degree : 2
P, P,=xP,P,,a>0 (x=1 fora C, continuity )
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= G, continuity ( C, continuity is more strict)

= Continuity of the osculatory plane's orientation

<Pd_Pd—1)><<Pd—1_Pd—2>ZY<P;_PT>X<PT_P;)

3 s *[|3
d||Pyi— Py - d||P,— P,

(d—1)H(Pd_Pd—1)><<Pd—l_Pd—2>H_(d*_I)H(P;_PT)X<PT_PZ)H

= Continuity of the curvature radius 3

dP
du
d’ P o dP
du’ du

R=

%
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= G, continuity ( C, continuity is more strict)

= Continuity of the osculatory plane's orientation

(Py=Py )X(Py_ =Py )=y (P,— P)X(P\—P,)

= Continuity of the curvature radius

dl|P,_,—P,| d

([d-1)](P, ~Pa PP o8 Poolll (d = 1)|(P;=P)x (PP

*
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= The G, continuity with £> 2 in the general case is
complex to impose

= The C, continuity is easier to impose (simple
expression of higher order derivatives)

= Curve should be regular!

= Same as imposing the continuity of functions x(u), y(u) and z(u) ,
independently of each other.

dkP k d—k
k d—k
— (u):l]}u—zﬂ);) PY B (u)
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= C,continuity P,=P,
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- C continuity P ,=P,+(P,—P,))
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- C, continuity P,=P, ,+4(P,—P, )
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- C, continuity ~P,=8P,—12P, +6P, ,—P,_,
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= The curve has now a unique representation of degree
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= Recursive subdivision

= Allows to draw the curve quickly with the help of De
Casteljau's algorithm

ldea : splitting up the curve in two parts at 4=0.5, then these sub-
curves in four parts ( still for #™=0.5) and so on.

The control points of the sub-curves are obtained like a residual of
the De Casteljau algorithm at each step

The control points quickly converge toward the curve

When the gap between the starting and ending points of each sub-
curves is lower than a factor (depends on the resolution), we join
simply the points of the characteristic polygon by straight line
segments.

It's a « divide and conquer » approach — a famous paradigm in
software engineering.
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0 subdivision f

~N

4 subdivisions //’

g subdivisioni/’ -
16 subdivisio /

32 subdivision

165



¢ LIEGE Computer Graphics

< université

Bézier curves

= Cost of the recursive subdivision algorithm

= InO(d*-2") for m levels of subdivision
= Number of generated points: d-2"

= For each point that is generated, the algorithm
becomes linear...

= Competitive in comparison with Horner
= |t is not very accurate, nevertheless very robust.
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= Three useful references :

R. Bartels, J.C. Beatty, B. A. Barsky, An
iIntroduction to Splines for use in Computer
Graphics and Geometric Modeling, Morgan
Kaufmann Publications,1987

JC.Léon, Modélisation et construction de
surfaces pour la CFAO, Hermes, 1991

L. Piegl, W. Tiller, The NURBS Book, Second
Edition, Springer , 1996
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= |saac J. Schoenberg (1946)
Carl De Boor (1972-76)
Maurice G. Cox (1972)
Richard Riesenfeld (1973)
Wolfgang Boehm (1980)
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= For Bezier curves, the polynomial degree is directly
related to the number of control points.

= The control of the continuity between Bézier curves is not trivial

= B-Splines are a generalization in the sense that the
degree doesn't depend on the number of control
points

= One can impose every continuity at any point of the curve (we will
see later how to do that)

= They are polynomial curves, by pieces (Bézier curves have a unique
polynomial representation along the interval of definition)

= They may provide local control

= The parametrization can be freely chosen (with Bézier, it is fixed ,
usually 0<u<l1.)
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= Basis odeézier Curves :
P(“):Z PiBf(”)
i=0
= The support of the basis functions is the interval [0..1]

= Continuity is C_ , and between different Bézier curves
it is enforced by a wise choice of the P.'s

= B-splines basis
P(u)=) P, N (u)
i=0
= The basis functions N‘ are piecewise polynomials

= Have a compact support + satisfy partition of the unity
= The continuity is defined at the basis function's level. 5
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= The basis functions B-spline are defined

= by the nodal sequence and by the polynomials degree
of the curve

= Nodal sequence:

= Itis a series of values u. (knots) of the parameter u of
the curve, not strictly increasing — there can be equal
values.

= ex. U={0,0,0,1,2,3,4,4,4}
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= Constuction of B-Spline basis functions

= Truncated Power Function
(=) = (u—u,) if U=>u,
o 0 otherwise

= |tis a function of C%!continuity

1

Computer Graphics

A

<
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= Divided differences

= order one (similar to a simple derivative)

f(uH—l)_f(ui)
U1~ U,
U is a hidden parameter
( variable used to differentiate)

= order 2 : application of the above formula twice...

[“i+1’ Mi+2]Uf<U>—[MZ-, ui+1]Uf(U)

U.,,—U,

1+

L v |y £(U)=

[ui’ui+1’ui+2]Uf(U):

f(”i+2)_f<”i+1) f(ui+1)_f<ui)

Uiy~ Ui Ui, 1 U,

[ui’ui+1’ui+2]Uf<U>: : 180
Uipr—U;

1
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= At the order &

[”i+1’ T ui+k]f_[ui""’ui+k—1]f

Ly, ) f =

Uivg — U,

= One assumed that v, 7u, #u, ,

l

= Properties (see Bartels, 1987)

1- In the case where u;,=u, ,=u,,

1 d*f

[ul‘:°”1ui+k] — / k
k! du =1,
2-if wFu; Fu, o and  u<ug,

_Ld'f
[ul‘,-.-,Ui—i-k]f_k/ duk .

1 SUp

*
)ui<u <ui+k
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3- [I/l

l’

, U, k] f is symmetric with respect to the knot vector

4- If f{lu) is a polynomial of degree at the most equal to £, then
[, 1S
is a constant with respect to the u..

5- The divided difference of f=g(u).h(u) is :
j=i+k

[ui’”"uiJrk]f: 2 <[ui’”"uj]g)'<[uj"”’ui+k]h)
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= Divided differences and B- Splmes

(u—u,);

L S

= How to cancel quadratic terms ?

— subtract adjacent truncat(ed p)cz)wer functions.
Alu—u, ) —(u—u,); Ut

<«€4—— |astterm remains

AN

(u—u,); (u_uk—l)i
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= Problem, lower order terms are dependent on %

(”_”kﬁ_(”_uk—l)i :O’uz"'(”k_”k—l)'”+<”k_”k—1)(”k"‘uk—l)'l

u>u,

But, dividing by (u,—u,_,) yields a divided difference :

(=, )i —(u—u,_,);

:{”k—p ”/JU(”_U)-ZF

A (u_uk)i

<« Jastterm remains

— —_ - - — >

g,y (u=U); iy (u=UY: 184
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= Now, cancel linear terms ...

<4 |astterm remains

>

[”0’ “1}U<u_U)i

Same procedure ; subtract adjacent terms.

”1 ”2 {”0 ”1 (u_uk)i

A

//// <«—— Two last term remains
/ _

[“k—l’uk}y(u_U)i 185
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= Again, lower order terms are dependent on &

[uk—l’ ”k—zly(”_U)i_[”k’ ”k—lly(”_Uﬁ wsu,

:O'u+<<”k+“k—1)_(”k—1+”k—2>)'1:(”k_uk—z)'l

Dividing by (u, —u,_,)yields again a divided difference :

{“k—l’ “k—zly(”_U)i_[“k’ ”k—lly(”_Uﬁ

U,—Uyp_,

:[”k—z’ Up 4, ”k]U(”_U)i
2

(“_“k)+

<«4—— Two last term remains

{”k—l’”k}y(u_Uﬁ 186
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= Now, cancel constant terms ...

Two last term remains

>

= Same procedure : subtract adjacent
[”1’”2’”3}U(”_U)i_[uo’ul’uz}y(u_U)i

terms.

Three last term remains

>

(u_uk)+
/ /\

187



¢ LIEGE Computer Graphics

< université

B-Splines

= There are no lower order terms. However we might
divide anyway by (¢, —u, ,) to remain consistent and

get again an expression as a divided difference...

Up 2 Up_q5 ”klU(U_U)i_[”k—p Uy o, ”k—1ly(”_U)i

Uy —Ujp_5

2
[“o:ul’uz}ua]u(u_(])i [uk_z’uk_l’uk]U(u_U)Jf

A ¢ (u_uk)+
- |
<« Three last term remain
7/ >
2
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= The sign is alternating with the degree. Shape function
of even degree are negative, while SF of uneven
degree are negative.

= Multiplying by (—1)**' makes every SF positive.

= To ensure that the SF form a partition of unity , we
have to multiply again by (u,,,,,—u,)

= The compact representation of the B-Splines basis
functions of degree d with the use of divided
differences is therefore :

N?:(_1>d+1(ui+d+1_ui)[ui’”.’ ui+d+1]U<u_U)i
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= Proof of the partition of unity : consider the second last
operation (the cancellation of constant terms)

A

= We subtract consecutive terms to form the final shape functions

= Partition of unity means the sum of all the final shape functions is

equal to 1..

LT

VY

u

. that this is indeed the case only on a certain range of u.

D PR P

_l__ -
u

m-1 m

///

— T

More generally, there is
partition of unity far _,

, m+1 being the number of
knots in the knot vector [u,--u, |

mdl u MU) del(u)

o 190
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= Recursive definition of basis functions

= Setting U={u,, -, u,},u<u, ,i=0---m—1

(nodal sequence)

i+1 9

= The functions are such as : (recurrence formula of
Cox — de Boor)

Nl()(u): 1 lf | uiSl/l< Z/ll-+1
0 otherwise
U—1Uu, ~ U. —u ~
N{(u)=———=N; (u)+——"——N{] (u)
U,, ,— U, N

- Where u, - u=0, necessarily N{ '(u)=0

By convention, we set in this case %:o when the

limit is undefined. 193
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= Example : computation of basis functions of
degreed <2 for U={u,=0,u,=0,u,=0,u,=1,u,=1,u.=1|

u—1u,

u,—u 0
T W ) o
1 0

by convention

0: 1 [
Ng 0 No‘? ﬁ: (1—u)’ OSu<l\
N,=0 1_ l—u 0<u<l1 0 LO otherwise
N=| ! 0 otherwisey , [24(1-u) 0su<l
0 otherwise Wl U O<u<l1 0 otherwise
0__ 2= . :
NZ—O | kO otherwise Vi 2 0<y< 1
N4=0 ;=0 -

;;O otherwise /

Bernstein polynomials of degree 2 194
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= The Bernstein polynomials of degree d are a
particular case of the B-splines basis

= They correspond to a nodal sequence

Ug={uy=0,"",u,=0,u,, =1, u,, =1}

= Bézier curves are therefore a particular case of B-
splines.

= |tis also possible to transform any B-spline into a
sequence of Bézier curves — because the Bernstein
polynomials form a complete basis of polynomials of
degree d.
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= Basis functions and control points

= |n contrary to Bézier curves, the number of control
points is not imposed by the degree d

= Let m+1 the number of knots. We have n+1
independent basis functions at our hands

= For every basis function, we associate a control point
n
_ d
P(”)‘Z P; N, (u)
i=0

= The number of control points is fixed by the relation
n+1=m-d
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= Types of nodal sequence...

= Uniform — The gap between two successive knots is constant

U=lug,ty, Uy gy} o Uy —u=k

= Periodic - The gap between the knots at the start of a nodal
sequence is identical to the one at the end of the nodal sequence
U={ug -ty Uyt gy t'g o u'y u'—u=k

l l

| - —

d+1 d+1
= Non uniform, interpolating — first and last control point are interpolated
U:{a’”"a’“d+1""’”m—d—1fb””’b}
— —
d+1 d+1

In the sequel, except where indicated, we consider non
uniform nodal sequences interpolating the first and last
control points. 197
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N
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0

0,5,5,5,5,5,5} d=5 m+1=12 n+1=6

Bernstein polynomials (with a factor on u)
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= Properties of B-spline basis functions

N¢(u)=0 outside the interval [u;, U, [

l

Inside the interval [ u,, u,+1[ at most d+1 functions
N?(u) are non zero : N{_,,---, N{

N (u)=0 Vi, d and u (always positive)

For u€lu,, u,, [, ), N‘j(u):l (forms a partition of
unity) j=i—d

All derivatives of N (u)exist |nS|de the

interval [u,, u,, . At a knot , N (u) is d-k times
differentiable, & being the node multiplicity.

Except for d=0, N¢(u) reaches exactly one maximum
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U:{O’O’O)()al)2:3’3’5;5,5,5} d=3 m+1=12 n+1=8
The node u=3 1s of multiplicity 2 206
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U={0,0,0,0,1,3,3,3,5,5,5,5} d=3 m+1=12 n+1=8
The node u=3 is of multiplicity 3
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= The characteristics of basis functions involve that
the B-Spline curve
P(u)=) P,N!(u) U=lu,, - ul,u<u, ,i=0-m—1
i=0
= interpolates P, and P_,(only if the nodal sequence
admits d+1 repetitions at the start and at the end !)
= is invariant by affine transformation ,

= is contained by the convex hull of the control points
(because P(u) is a linear combination of the control
points with positive coefficients which sum to one)
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(Following)

= |s variation diminishing : The number of inflexion
points is lower than the number of wiggles of the
characteristic polygon

= |s closed and convex if the characteristic polygon is
closed and convex,

= |s of length shorter or equal than that of the control
polygon.

= |s invariant by linear transformation of the nodal
sequence u'=au+tb , a>0
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= Control points, degree and nodal sequence

= We associate a control point for each basis function
N’ . We have n+1 control points.

= The degree d is chosen by the user.

= The nodal sequence (that defines the intervals of the
parameter on which the curve has a unique
polynomial definition) is then built. We have
m+1=n+d+2 knots (with d+1 repetitions at the start and
at the end)

= there remains n-d values of the parameter to set (without taking into
account the boundaries)
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= Geometric examples

= Constant number of control points
= We increase the degree
= Uniform repartition of knots (except at the boundaries)

= For which degree do we have the best approximation
of the control points ?7?
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Degree 1
00 0.0833333 0.166667 0.25 0.333333 0.416667 0.5 0.583333 0.666667 0.75 0.833333 0.916667 1 1
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degree 2
0000.0909091 0.181818 0.272727 0.363636 0.454545 0.545455 0.636364 0.727273 0.818182 0.909091 1 1 1
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degree 3
00000.10.20.304050.60.708091111
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degree 4
000000.111111 0.222222 0.333333 0.444444 0.555556 0.666667 0.777778 0.888889 1 1111
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degree 6
00000000.142857 0.285714 0.428571 0.571429 0.714286 0.857143 1111111
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degree 10
000000000000.3333330.6666671 1111111111
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degree 12 (Bézier)
00000000000OOOTTITTITIITITITIITITT
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= Impose interpolation points (and C, continuity )

= |tis the same as positioning knots of multiplicity d in
the nodal sequence

= One could also repeat d control points...(not shown
here)
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u=1 + .

u=0.9

degree 3
00000.10.20.50.50.50.70909091111
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u=1 + .

u=0.9 B
u=0.5 u=0

degree 3 (4 Bezier curves of continuity C)
00000.10.10.10.50.50.50909091111
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u=10.1

u=0.4 u=0

degree 3 (3 Bézier curves of continuity C, + 1 bspline deg 3 with 4control pts)
00000.10.10.104040408080.8091111
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= And if we want to impose interpolation points and

a certain continuity C,_?

= Add / align control points in a similar way than in the
case of Bézier curves.
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= Periodic curves

= They may be represented by modifying the nodal
sequence and by repeating some control points.

. » LN
[ e ! [

Uniform nodal sequence

uniform nodal sequence
and periodic curve 227

Non-uniform nodal sequence
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non uniform nodal sequence interpolating
the first and last control points.

.- .

degree 3
00000.10.20304050.60.708091111
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Periodic nodal sequence
(but control points located
in a non adequate way)

degree 3

-0.3-02-0.100.10203040.50.60.70.80911.11.21.3 279
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degree 3
-0.3-0.2-0.100.10.20.3040.50.60.70.80911.11.21.3
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degree 3
-0.3-0.2-0.100.10.20.3040.50.60.70.80911.11.21.3
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Periodic nodal sequence
+ control points placed in an adequate way (repeated)

= periodic curve

/‘_1_‘_

degree 3

-0.3-02-0.100.10203040.50.60.70.80911.11.21.3 232
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= Algorithms for the manipulation of B-Splines
curves

Boehm's knot insertion algorithm

Evaluation of the curve (Cox-de Boor algorithm)
Derivatives and hodographs

Restriction/growth of the useful interval of a curve
Degree elevation

Recursive Subdivision
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= Boehm's knot insertion algorithm

The idea is to determine a new control polygon for the
same curve after the insertion of one or several knots
In the nodal sequence.

The curve is not modified by this change : neither the
shape nor the parametrization are affected.

Interest :

= Evaluation of points on the curve
= Subdivision of the curve
= Addition of control points
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* Let p(u)=) P.N?(u) aB-Spline curve built on the
i=0 nodal sequence : U={u,, -, u,|

= Let u€lu,,u,.,[ aknotto be inserted
= The new nodal sequence is :

U={tg=uy, U=y, Uy =8, U U,

= The new representation of the curve is :

n+1

P(“):g QZN;Z(“)

= The N!(u) are the basis functions defined on U, the Q. are the
n+2 new control points.

= How define the Q. so that the shape is unchanged ?
235
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After algebraic manipulations...

Qr_a=P;_4

we obtain

O.=o,P+(1—o,)P,_, fori€lk—d+1,--- k|

Qk+1:Pk

We had: P,=0, for iE{O,-

o k—d—1)

P,=0.,, forielk+1,---, n|

so finally :

O.=o,P+(1—o,)P, , with o,=

(

1 i<k—d
U—u, :
k—d+1<i<k
ui+p_ui
0 i>k+1
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= Multiple knot insertions

= Assume u€<€[u,,u, ,[of multiplicity s (0<s<d ). We
want to insert it » times with r+s<d.

= We note O’ the control points of the r-th insertion step

= We have then:

| i<k—d+r—1
r_ rr—1 r r—1 . r__ Zjl_ui .
O'=a,Q +(1—a;)Q/", with o= k—d+r<i<k-—s
Uivg—re1— U,
0 i=k—s+1
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= The O's can be put in a table:

= The total number of new control points is d-s+r-1 that

replace d-s-1.
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= The use of the algorithm of node insertion up to
multiplicity of d=r+s is such that the curve will
Interpolate the last control point that is computed.

= Therefore, one can use this algorithm to compute the
position of a point of the curve knowing the parameter.

= It's precisely Cox-de Boor's algorithm. The sequence of points P/ is
not anything else than the Q! indicated on the graph, cf following
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= Case rt+s=d+1 : We carry out the insertion of
multiplicity »-1 then we insert one more knot to « cut »
the B-spline curve in two independent parts.

= The last control point Q,‘f has to be duplicated.
= Allows to extract a portion of the B-spline.

= There exists an extension of this algorithm in the
case of the simultaneous insertion of many
knots: it is the somewhat more complex “Oslo”
algorithm™

* E. Cohen, T. Lyche, R. Riesenfeld “Discrete B-splines ans subdivision techniques in
computer-aided geometric design and computer graphics”, Computer Graphics and Image

Processing, 14(2):87-111, 1980. 245
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U={0,0,0,0,0,0,1,1,1,1,1,1}
degree 5
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U={0,0,0,0,0,0,1,1,1,1,1,1}
degree 5
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U={0,0,0,0,0,0,1,1,1,1,1,1}
degree 5
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vU={0,0,0,0,0,0,0.2,1,1,1,1,1,1}
degree 5
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U={0,0,0,0,0,0,0.2,04,1,1,1,1,1,1|
degree 5
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U={0,0,0,0,0,0,0.2,04,06,1,1,1,1,1,1}
degree 5
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U={0,0,0,0,0,0,0.2,0.4,0.6,0.8,1,1,1,1,1,1}
degree 5
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U={0,0,0,0,0,0,0.1,0.2,---,09,1,1,1,1,1,1}
degree 5
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v={0,0,0,0,0,0,0.05,0.1,---,095,1,1,1,1,1,1|
degree 5
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U={0,0,0,0,0,0,0.05,0.1,---,0.95,1,1,1,1,1, 1}

degree 5

Local control...
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U={0,0,0,0,0,0,1,1,1,1,1,1|
degree 5
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U=(0,0,0,0,0,0,0.3,1,1,1,1,1,1}
degree 5

257



université

:; LIEGE Computer Graphics

B-Splines

U=(0,0,0,0,0,0,0.3,03,1,1,1,1,1,1|
degree 5
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U={0,0,0,0,0,0,0.3,0.3,0.3,1,1,1,1,1,1}
degree 5
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U={0,0,0,0,0,0,0.3,0.3,0.3,03,1,1,1,1,1,1}
degree 5
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U={0,0,0,0,0,0,0.3,0.3,0.3,0.3,0.3,1,1,1,1,1,1}
degree 5
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U={0,0,0,0,0,0,0.3,0.3,0.3,0.3,0.3,1,1,1,1,1,1}
degree 5
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= Computation of a point on a B-Spline curve

= By the use of basis functions

1 — Find the nodal interval in which u is located
uE[ui, ui—l—l[

2 — Calculate the non vanishing basis functions
N (u), -, N (u)

1

3 — Multiply the values of these basis functions with the
right control points

P(u)=)_ N¢(u)P, i—d<k<i
k

= By Cox-de Boor's algorithm
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= (simplified) Cox-de Boor's Algorithm :

Determine the interval of u : u€lu,,u, |

Initialization of Pg icld,d+1,- m—d—1]

For k from 1 to d
Forj from 1 to 1-d+k

P! is the point that is sought.

— U . u . —U
k k—1 +d+1—k
P.= L P+ 4
Ujrat1-k—U; Ujrar1-x— U,
Endfor
Endfor

Pt

j—1

= What is its complexity ?

= quadratic in function of the degree d.
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= Example of computation
P.=(0,1) P/=(2,3) P5=(5,4) P;=(7,1) P’,=(6,—1) P.=(6,—2)
U={0,0,0,0,1,2,3,3,3,3] d=3 u=3/2

= Determination of the interval

1<3/2<2 ,u,=1 > i=4 P’?=(uj+fjfiu_,
= |teration 1
P,=(27/4,1/2) P,=(6,5/2) P,=(17/4,15/5)

= |teration 2

P2=(99/16,2) P3=(89/16,45/16
= |teration 3

P,=(4718,77/32)=P(3/2)

JC Led®
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= The algorithm is similar to De Casteljau's algorithm for
Bézier curves

= |t is built on a restriction of the set of control points (d+1 points)

= On this restriction, it is identical, except for the coefficients related to
the nodal sequence (which is potentially non uniform)

= The complete algorithm is somewhat longer than this one
(possibility to have 0/0 : we set conventionally 0/0 =0!)
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= Transformation of a B-Spline curve into a
composite Beézier curve

= We saturate each distinct knot until its multiplicity is
equal to d.

= This is made with the help of Boehm's algorithm of
nodal insertion.

= The curve is not modified !

= We obtain a nodal sequence which has the following
form :

U=\a,a,a,a,b,b,b,c,c,c,"",z,z,2,z|

~ v v ~—

d+ 1 times d times d times d+ 1 times

= Each distinct value of u corresponds to one of the points of the

curve. 267
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U={0,0,0,0,1,2,3,3,3,3]

degree 3
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U={0,0,0,0,1,1,2,3,3,3,3)
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U={0,0,0,0,1,1,1,2,3,3,3,3]
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U={0,0,0,0,1,1,1,2,2,3,3,3,3|
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U={0,0,0,0,1,1,1,2,2,2,3,3,3,3|
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Bézier n°3 Bézier n°2 Bézier n°1
4 CP 4 CP 4 CP
degree 3 degree 3 degree 3
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= Some conclusions
= Flexibility

Low order

Continuity

Periodic curves

Conics ?
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