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Computer Graphics

Course outline

 Introduction 
 Images and display techniques

 Bases
 Gamma correction
 Aliasing and techniques to remedy
 Storage 
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Computer Graphics

Course outline

 3D Perspective & 2D / 3D transformations
 Go from a 3D space to a 2D display device

 Two paradigms for image synthesis
 Representation of curves and surfaces

 Splines & co.
 Meshes 

 Realistic rendering by ray tracing
 Concepts and theoretical bases
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Computer Graphics

Course outline

 Lighting
 Law of reflexion, Textures

 Colorimetry
 Color space
 Metamerism

 Graphic pipeline and OpenGL
 Primitives
 Discretization (Rasterization)
 Hidden faces

 Animations ?
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Computer Graphics

Course outline

 Parametric surfaces
 Coons patches
 Tensor product surfaces
 (Bézier triangle)

 Non parametric surfaces
 Subdivision surfaces
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Parametric Surfaces
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Parametric Surfaces

 Coons patches
 Tensor-Product Surfaces
 Bézier Triangle
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Coons patches

 Bilinear Coons patch 
 Steven Anson Coons – (published in 1967 but came 

from research done during WWII in aeronautics)
 Let 4 parametric curves (Bézier or B-Splines or other) 

passing trough 4 points (A,B,C,D) :
P

1
(u)=P(u,0) , P

2
(u)=P(u,1) , 

Q
1
(v)=P(0,v) , Q

2
(v)=P(1,v) such as

P(0,0)=A P(1,0)=B
P(1,1)=C P(0,1)=D

 The surface P(u,v) is carried by  
these 4 curves

D C

A B

P(1,v)
=Q

2

P(u,1)=P
2

P(u,0)=P
1

P(0,v)
=Q

1

P(u,v)
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Bilinear Coons patches

 We define 3 surfaces by linear interpolation: 

S 1(u , v)=(1−v)P (u ,0)+v P (u ,1)
S 2(u , v)=(1−u)P (0,v)+u P (1, v)
S 3(u , v)=(1−u)(1−v)P (0,0)+u(1−v)P (0,1)

+v (1−u)P (1,0)+uvP (1,1)

S 1u , v 

S 2u , v

S 3u ,v 
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Bilinear Coons patches

 The Bilinear Coons patch is defined by :

 Why  ?

S
1
 interpolates A,B,C,D

S
2
 too

S
1
+S

2
 can just interpolate A,B,C,D if we remove a term depending on 

A,B,C,D and linear in u and v.

P (u , v)=S 1(u , v)+S 2(u , v)−S 3(u , v)

P (u , v)
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Bilinear Coons patches

 Systematic notation

The surface may be expressed as :

 In this notation, F
1
(x)=1-x and F

2
(x)=x are blending 

functions, and x is either u or v . They can be 
replaced by whatever function to achieve e.g. a better 
continuity (see later)

 In the matrix, the lower right 4-by-4 square 
corresponds to surface S

3
; the upper line to S

1
 and left 

column to S
2
.

P (u , v)=(1 F 1(u) F 2(u))⋅(
0 P (u ,0) P (u ,1)

P (0,v) −P (0,0) −P (0,1)
P (1,v) −P (1,0) −P (1,1))⋅(

1
F 1(v)
F 2(v)

)
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Bilinear Coons patches

 Characteristics of a bilinear Coons patch 
 Easy to build
 Based on any set of 4 boundary curves
 However, there is no precise control of the shape of 

the surface “inside” the patch
e.g. it is impossible to impose a C1 continuity between two 
neighbouring patches without constraints on the network of curves
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Computer Graphics

Hermite blending

 It is however  possible to carefully select  F
1
 and F

2
 so 

that they are C1 – continuous , like e.g. Hermite 
polynomials :

 Then , as                          , the derivatives are

continuous over patch boundaries.

However, this is usually not sufficient : there are too 
many constraints on the derivatives (they vanish) and 
it yields a surface with flat areas around the edges.

P (u , v)=(1 F 1(u) F 2(u))⋅(
0 P (u ,0) P (u ,1)

P (0,v) −P (0,0) −P (0,1)
P (1,v) −P (1,0) −P (1,1))⋅(

1
F 1(v)
F 2(v)

)

F 1(x)=2 x3
−3 x2

+1 F 2(x)=−2 x3
+3 x2

∂ F 1(x)

∂ x |
x=0

=0
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Hermite Blending

 Hermite interpolation

H is Hermite's matrix

C (u)=( A1 , A2 , A1
u , A2

u )(
2 −3 0 1
−2 3 0 0
1 −2 1 0
1 −1 0 0

)(
u3

u2

u
1
)

A1

A2

A2
u

A1
u
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Hermite Blending

 Bicubic Hermite patch
 2D Hermite's interpolation
 4 positions at corners
 8 normal derivatives 
 4 torsion vectors at corners

S(u,v)

S 3u , v =u3 , u2 , u , 1 HT 
A00 A01 A00

v A01
v

A10 A11 A10
v A11

v

A00
u A01

u A00
uv A01

uv

A10
u A11

u A10
uv A11

uvH 
v3

v2

v
1

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Bicubic Coons patches

 Bicubic Coons patch
 One can build a surface that is based on any 

boundary curves as for the bilinear patch
 8 curves are necessary :  4 positional curves + 4 

“curves” depicting normal derivatives
 There are constraints between the derivative curve on 

one side and the positional curve on an incident side.
 There are also constraints on the derivative

curves on each corner (cross derivatives
must be equal) S(u,v)
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Bicubic Coons patches

 As for the bilinear case, we need information on 
boundary curves : position + derivatives, and 
corresponding info at the corners.

[D] [C]

[X] = [P(i,j) , P(i,j)
u
, P(i,j)

v
, P(i,j)

uv
] , (i,j)={0,1}2

[B]

P(u,v)

Pv (u ,0)

P (u ,0)

Pv (u ,1)

P(u ,1)

Pu
(1, v)

P(1,v)

Pu (0, v)

P(0, v)

[A]
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Bicubic Coons patches

 Systematic notation for the bicubic Coons patch
 We have now :

P (u ,v)=(1 F 1(u) F 2(u) F 3(u) F 4(u))

⋅(
0 P (u ,0) P (u ,1) P v(u ,0) Pv (u ,1)

P (0, v) −P (0,0) −P (0,1) −P v(0,0) −Pv (0,1)
P (1, v) −P (1,0) −P (1,1) −P v (1,0) −Pv (1,1)
Pu (0, v) −Pu (0,0) −Pu(0,1) −Puv(0,0) −Puv (0,1)
Pu(1, v) −Pu(1,0) −Pu(1,1) −Puv(1,0) −Puv (1,1)

)⋅(
1

F 1(v)
F 2(v)
F 3(v)
F 4(v)

)
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Bicubic Coons patches

… with                                andH*
=(

1 ⋯0⋯
⋮
0 H
⋮

)

=(1 u3 u2 u 1)⋅(H*
)

T

⋅(
0 P (u ,0) P (u ,1) P v(u ,0) Pv (u ,1)

P (0,v) −P (0,0) −P (0,1) −P v(0,0) −Pv (0,1)
P (1,v) −P (1,0) −P (1,1) −P v (1,0) −Pv (1,1)
P u(0, v) −Pu (0,0) −Pu(0,1) −Puv(0,0) −Puv (0,1)
Pu(1, v) −Pu(1,0) −Pu(1,1) −Puv(1,0) −Puv (1,1)

)⋅H*
⋅(

1
v3

v2

v
1
)

H=(
2 −3 0 1
−2 3 0 0
1 −2 1 0
1 −1 0 0

)
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Bicubic Coons patches

 As for bilinear patches, it can be decomposed 
into three surfaces

S 1(u ,v)=(P (u ,0) , P (u ,1) , P v(u ,0) , Pv (u ,1))H(
v3

v2

v
1
)

S 2(u , v)=(P (0, v) , P (1,v) , Pu(0, v) , Pu(1,v ))H(
u3

u2

u
1
)

S 1u , v 

S 2u , v
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Bicubic Coons patches

S 3(u , v)=(u3 , u2 , u ,1 )⋅HT

⋅(
P (0,0) P (0,1) P v(0,0) P v (0,1)
P (1,0) P (1,1) Pv (1,0) P v (1,1)
Pu(0,0) Pu (0,1) Puv(0,0) Puv(0,1)
Pu(1,0) Pu(1,1) Puv(1,0) Puv(1,1)

)⋅H⋅(
v3

v2

v
1
)

P (u , v)=S 1(u , v)+S 2(u , v)−S 3(u , v)
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Bicubic Coons patches

 Bicubic Coons patch 

The terms of the matrix are computed with the help of 
border curves and verify the following conditions :

P (u , v)=S 1(u , v)+S 2(u , v)−S 3(u , v)

S 3(u , v )=(u3 , u2 , u ,1 )HT (
A00 A01 A00

v A01
v

A10 A11 A10
v A11

v

A00
u A01

u A00
uv A01

uv

A10
u A11

u A10
uv A11

uv)H (
v3

v2

v
1
)

A00=P(0,0) A01=P (0,1) A00
v
=Pv (0,0) A01

v
=P v (0,1)

A10=P(1,0) A11=P(1,1) A10
v
=Pv (1,0) A11

v
=Pv (1,1)

A00
u
=P u(0,0) A01

u
=P u(0,1) A00

uv
=P uv(0,0) A01

uv
=Puv (0,1)

A10
u
=P u(1,0) A11

u
=P u(1,1) A10

uv
=Puv(1,0) A11

uv
=P uv(1,1)
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Bicubic Ferguson patch

 Ferguson patch

The terms of the matrix are computed with the help of 
border curves and verify the following conditions :

P (u , v)=S 1(u , v)+S 2(u , v)−S 3(u , v)

S 3u , v=u3 , u2 , u ,1 HT 
A00 A01 A00

v A01
v

A10 A11 A10
v A11

v

A00
u A01

u A00
uv A01

uv

A10
u A11

u A10
uv A11

uvH
v3

v2

v
1


A00=P(0,0) A01=P (0,1) A00
v
=P v (0,0) A01

v
=P v (0,1)

A10=P(1,0) A11=P(1,1) A10
v
=P v (1,0) A11

v
=P v (1,1)

A00
u
=P u(0,0) A01

u
=P u(0,1) A00

uv  such that 
∂

2 P
∂u∂ v

(0,0)=0 A01
uv  such that 

∂
2 P

∂u∂v
(0,1)=0

A10
u
=P u(1,0) A11

u
=P u(1,1) A10

uv  such that 
∂

2 P
∂u∂ v

(1,0)=0 A11
uv  such that 

∂
2 P

∂u∂v
(1,1)=0
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Bicubic Coons patches

 We can impose the position and the normal tangent 
along the boundaries

 Remain the problem of the continuity at every corner
 We usually impose that cross derivatives vanish → Ferguson patch
 Other constraints may be found in the literature... 
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Tensor product surfaces

 Parametric surfaces as a polar form

 One shape function per control point

 « Tensor product » surface if N
k
 is separable : 

 Combination of elementary curves/shape functions 
independently defined on u and v. 

Usually built upon Bézier and B-Splines curves/SFs
 The “unique” shape function is 

S u , v=∑
i
∑

j

G i uH j v Pij

S (u , v)=∑
k

N k (u , v )Pk

N k (u , v)=G i (u)H j (v)
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B-Spline surfaces

 B-Splines surfaces uses 1D B-Spline shape fns.
 Definition as tensor product :

 Every variable u and v has a degree (p and q) and a 
nodal sequence U and V :

 The control points forms a regular net P
ij
  ( n+1 times 

m+1 ) values.
 We have the following relations :

S u , v=∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v Pij

U={0,⋯ , 0⏟
p+ 1

, u p+ 1 ,⋯ , ur− p−1 ,1,⋯ ,1⏟
p+ 1

} (r+ 1 nodes)

V={0,⋯ , 0⏟
q+ 1

, vq+ 1 ,⋯ , v s−q−1 , 1,⋯ ,1⏟
q+ 1

} (s+ 1 nodes)

r=n+ p+ 1 s=m+ q+ 1
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B-Spline surfaces

U={0 ,0 ,0 ,0 ,1 /4 ,1/2 , 3/4 ,1 ,1 ,1 ,1} p=3

V={0 ,0 ,0 ,1/5 ,2 /5 ,3/5 ,3/5 ,4 /5,1 ,1 ,1} q=2

L
. P

ie
gl

 «
 T

he
 N

U
R

B
S

 B
oo

k 
»

N 4
2
v 

N 4
3
u

N 2
2
v 

N 4
3
u

N 4
3
(u)N 2

2
(v)

Basis function associated to P 42

N 4
3
(u)N 4

2
(v)

Basis function associated to P44

 Example of basis functions
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B-Spline surfaces

 Properties of surface basis functions
 Extrema

If p>0 and q>0,  has a unique maximum.
 Continuity

Inside rectangles formed by the nodes u
i
 and v

j
, the 

SF are infinitely differentiable.
At a node u

i
 (resp. v

j
),   is (p-k) (resp. (q-k) ) 

times differentiable, k being the node multiplicity u
i
 

(resp. v
j
)

The continuity with respect to u (resp. v) depends 
solely on the nodal sequence U (resp. V).

N i
p
uN j

q
v 

N i
p
uN j

q
v 
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B-Spline surfaces

 Properties of surface basis functions
 A consequence of properties of the 1D shape functions
 Non-negativity

 Partition of unity

 Compact support 

There are at most (p+1)(q+1) non zero SF in a given 
interval                                    .
In particular

N i
p
uN j

q
v ≥0∀ i , j , p , q , u , v

∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v =1∀u , v ∈[umin , umax ]×[vmin , vmax ]

N i
p
(u)N j

q
(v)=0 outside (u ,v)∈[ ui , ui+ p+ 1 [×[ v j , v j+ q+ 1[

[ ui0
, ui01 [×[ v j 0

, v j01[
N i

p
uN j

q
v ≠0 i0− p≤i≤i0 j0−q≤ j≤ j0
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B-Spline surfaces

 Properties of surface basis functions
 Extrema

If p>0 and q>0,  has a unique maximum.
 Continuity

Inside rectangles formed by the nodes u
i
 and v

j
, the 

SF are infinitely differentiable.
At a node u

i
 (resp. v

j
),   is (p-k) (resp. (q-k) ) 

times differentiable, k being the node multiplicity u
i
 

(resp. v
j
)

The continuity with respect to u (resp. v) depends 
solely on the nodal sequence U (resp. V).

N i
p
uN j

q
v 

N i
p
uN j

q
v 
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B-Spline surfaces

U={0 ,0 , 0 ,0 ,1 ,2 , 2 , 2 , 2} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

U={0 , 0 ,0 ,0 ,1 , 2 , 3 , 4 ,5 ,6 ,6 ,6 ,6}
V={0 , 0 , 0 ,1 , 2 , 3 ,4 ,5 ,6 ,7 , 7 , 7}

N 2
3
uN 2

2
v 

N 4
3
uN 4

2
v 
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B-Spline surfaces

U={0 , 0 , 0 ,0 ,1 ,2 , 3 , 4 ,5 ,6 ,6 ,6 ,6} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,4 ,5 ,6 , 7 , 7 ,7} q=2

N 0
3
uN 8

2
v 

N 0
3
(u)N 0

2
(v)

N 8
3
uN 0

2
v 

N 8
3
uN 8

2
v 

N 1
3
uN 7

2
v 

N 1
3
(u)N 1

2
(v)

N 7
3
uN 1

2
v 

N 7
3
uN 7

2
v 
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B-Spline surfaces

 Computation of a point on the surface

1 – Find the nodal interval in which u is located

2 – Compute the non vanishing 1D shape functions

3 – Find the nodal interval in which v is located

4 – Compute the non vanishing 1D shape functions

5 – Multiply the SFs with the adequate control points

u∈[ ui , ui1 [

N i− p
p
u ,⋯, N i

p
u

v∈[ v j , v j+1 [

N j−q
q

v  ,⋯ , N j
q
v

S u , v=∑
k
∑

l

N k
p
uPkl N l

q
v  i− p≤k≤i , j−q≤l≤ j
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B-Spline surfaces

 Each coloured square has an independent polynomial 
expression

Control point

Corresponding position
at a couple (u

i
,v

j
)

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 , 3 ,3} q=3

V={0 ,0 ,0 ,1 , 2 ,3 ,3 , 3} p=2
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B-Spline surfaces

U={0 ,0 ,0 ,0 ,1 ,2 ,2 , 2 ,2} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2
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B-Spline surfaces

 Repetitions in the nodal sequence U or V
 Discontinuities along iso-v or iso-u

U={0 ,0 ,0 ,0 ,2 , 2 ,2 ,4 ,4 , 4 ,4} p=3
V={0 ,0 ,0 ,1.5 ,1.5 ,3 ,3 ,3} q=2
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B-Spline surfaces

 Properties of the B-Spline surface
 Interpolate the 4 corners if the nodal sequences are of 

the form

 If the nodal sequences correspond to Bézier curves : 

then the surface is called a Bézier patch.

U={0,⋯ , 0
p1

, u p1 ,⋯ , ur− p−1 ,1,⋯ ,1
p1

}

V={0,⋯ ,0
q1

, vq1 ,⋯ , v s−q−1 ,1,⋯ ,1
q1

}

U={0,⋯ , 0
p1

,1,⋯ ,1
p1

} V={0,⋯ ,0
q1

,1,⋯ ,1
q1

}
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B-Spline surfaces

 Properties of the B-Spline surface
 The surface has the property of affine invariance  

(invariance by translation in particular)
 The convex hull of the control points contains the 

surface.
 In every interval

, the portion of the surface is in the convex hull of the 
control points

 Control points may have a local control
 There is no variation diminishing property ( on the 

contrary to B-Spline/Bézier curves)

(u , v)∈[ ui0
, ui 0+1 [×[ v j 0

, v j 0+1 [

P ij , (i , j) such that i0− p≤i≤i0 j0−q≤ j≤ j0
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B-Spline surfaces

 Isoparametrics
 Computation of isoparametrics is easy :

Set u=u
0

 same with v=v
0 

Cu0
v=S u0, v=∑

i=0

n

∑
j=0

m

N i
p
u0N j

q
v Pij

=∑
j=0

m

N j
q
v∑

i=0

n

N i
p
u0Pij=∑

j=0

m

N j
q
vQ j u0

with Q j (u0)=∑
i=0

n

N i
p
(u0)Pij

C v0
(u)=S (u , v0)=∑

i=0

n

N i
p
(u)Qi (v0)

with Q i(v0)=∑
j=0

m

N j
q
(v0)Pij
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B-Spline surfaces

 Derivatives of a B-Spline surface
 We want to compute

 Differentiation of basis functions : 

∂
kl

∂uk
∂ v l S u , v=∑

i=0

n

∑
j=0

m
∂

kl

∂ uk
∂ v l N i

p
uN j

q
v Pij

∂
kl

∂uk
∂ v l

S u , v

=∑
i=0

n

∑
j=0

m
∂

k

∂uk N i
p
u 

∂
l

∂ v l N j
q
v Pij

=∑
i=0

n

∑
j=0

m

N i
p k 

uN j
q l 
vP ij



40

Computer Graphics

B-Spline surfaces

 Derivatives expressed as B-Spline surfaces
 Let's derive formally S with respect to u:

 We want to apply equations seen for curves :

∂ S (u , v)
∂u

=∑
j=0

m

N j
q
(v)( ∂∂u∑i=0

n

N i
p
(u)P ij)

=∑
j=0

m

N j
q
(v)(

∂
∂ u

C j(u))

with C j(u)=∑
i=0

n

N i
p
(u)P ij
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B-Spline surfaces

 Derivatives of the curve

U={u0 ,⋯, u p⏟
p+ 1  times

,⋯, um− p ,⋯, um⏟
p+ 1  times

}

Qi= p
P i1 j−Pij

uid1−ui1

P '
(u)=∑

i=0

n−1

N i
p−1
(u)Qi  with N i

p−1  defined on U '

C j u =∑
i=0

n

N i
p
u Pij

U '
={u0

' ,⋯, u p−1
'

⏟
p  times

,⋯, um− p−1
' ,⋯, um−2

'

⏟
p  times

} with ui
'
=ui+ 1
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B-Spline surfaces

 We obtain :

∂ S u , v
∂u

=∑
i=0

n−1

∑
j=0

m

N i
p−1

uN j
q
vP ij

1,0

with Pij
(1,0)

= p
Pi+ 1 j−P ij

ui+ p+ 1−ui+ 1

U={u0 ,⋯, u p⏟
p+ 1  times

,⋯, um− p ,⋯, um⏟
p+ 1  times

}

U (1)
={u0

(1) ,⋯ , u p−1
(1)

⏟
p  times

,⋯, um− p−1
(1) ,⋯, um−2

(1)

⏟
p  times

} with ui
(1)
=ui+ 1 ,0≤i≤m−2
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B-Spline surfaces

 Let's derive formally S with respect to v:

∂ S u , v
∂ v

=∑
i=0

n

∑
j=0

m−1

N i
p
uN j

q−1
v P ij

0,1

with Pij
(0,1)

=q
P i j+ 1−P ij

v j+ q+ 1−v j+ 1

V={v0 ,⋯, vq⏟
q+ 1  times

,⋯, vn−q ,⋯, vn⏟
q+ 1  times

}

V (1)
={v0

(1) ,⋯, vq−1
(1)

⏟
q  times

,⋯, vn−q−1
(1) ,⋯, vn−2

(1)

⏟
q  times

} with v j
(1)
=v j+ 1 ,0≤ j≤n−2
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B-Spline surfaces

 Let's derive formally S with respect to u , then v:

∂
2 S u , v 
∂u∂ v

=∑
i=0

n−1

∑
j=0

m−1

N i
p−1

u N j
q−1
vP ij

1,1

with Pij
(1,1)
=q

P i j+ 1
(1,0)

−P ij
(1,0)

v j+ q+ 1−v j+ 1

V (1)
={v0

(1) ,⋯ , vq−1
(1)

⏟
q  times

,⋯, vn−q−1
(1) ,⋯ , vn−2

(1)

⏟
q  times

} with v j
(1)
=v j+ 1 , 0≤ j≤n−2

U (1)
={u0

(1) ,⋯ , u p−1
(1)

⏟
p  times

,⋯, um− p−1
(1) ,⋯, um−2

(1)

⏟
p  times

} with ui
(1)
=ui+ 1 ,0≤i≤m−2
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B-Spline surfaces

 General case : 

 The derivative vector of a B-Spline surface also is a B-
Spline surface...

∂
kl S u , v 

∂uk
∂v l =∑

i=0

n−k

∑
j=0

m−l

N i
p−k

uN j
q−l
vP ij

k , l 

with Pij
(k , l )

=(q−l+ 1)
P i j+ 1
(k ,l−1)

−Pij
(k , l−1)

v j+ q+ 1−v j+ l

V (l )
={v0

(l ) ,⋯ , vq−l
(l )

⏟
q+ 1−l  times

,⋯, vn−q−l
(l) ,⋯, vn−2l

(l)

⏟
q+ 1−l  times

} with v j
(l)
=v j+ l , 0≤ j≤n−2 l

U (k )
={u0

(k ) ,⋯ , u p−k
(k )

⏟
p+ 1−k  times

,⋯ , um− p−k
(k ) ,⋯, um−2k

(k )

⏟
p+ 1−k  times

} with ui
(k )
=ui+ k ,0≤i≤m−2 k
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B-Spline surfaces

 Periodic surfaces
 Like for the curves, possibility to “close” a B-Spline 

surface by transforming the nodal sequence
 According to one parameter (u or v)

Cylindrical surfaces
 A single periodic nodal sequence
 Control points on both sides of the seam are doubled

 According to both parameters (u and v)
Toroidal surfaces

 Two periodic nodal sequences
 Some control points are repeated 4 times !
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B-Spline surfaces

u
v

Pipe 

u
v

Moëbius's ribbon
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B-Spline surfaces

U={−3 ,−2 ,−1 ,0 ,1 , 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,7 , 7} p=2
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B-Spline surfaces

U={−3 ,−2 ,−1 ,0 ,1 , 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,7 , 7} p=2
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B-Spline surfaces

u
v

Tore

u
v

Twisted Tore...
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B-Spline surfaces
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B-Spline surfaces
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B-Spline surfaces

U={−3 ,−2 ,−1 ,0 ,1 , 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15} p=3
V={−2 ,−1 , 0 ,1 ,2 ,3 ,4 ,5 , 6 ,7 , 8 ,9} p=2
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B-Spline surfaces

u
v

Klein's bottle
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B-Spline surfaces

 Some manipulations
 Insertion of nodes

 Extraction of iso-parametrics
 Calculation of the position of a point on the surface
 Subdivision of the surface
 Transformation into Bézier patches
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B-Spline surfaces

 Insertion of nodes
 We insert nodes In a nodal sequence (U ou V)
 The new nodal sequence replace the old one
 The control points are modified

 If U is modified, every series of control points corresponding to v=cst is 
independently modified

 If V is modified, every series of control points corresponding to u=cst is 
independently modified

 We use Boehm's algorithm as for curves

u

v

U={0 , 0 , 0 , 0 ,1 , 2 ,3 ,3 ,3 , 3} p=3

V={0 ,0 ,0 ,1 , 2 ,3 ,3 , 3} p=2
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B-Spline surfaces

 Insertion of nodes in u

U={0 ,0 ,0 ,0 ,0.4 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 , 3 , 3} q=2

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2
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B-Spline surfaces

 Insertion of nodes in v

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,0.4 ,1 ,2 ,3 ,3 ,3} q=2

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2
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B-Spline surfaces

 Extraction of iso-parametrics using node insertion
 We must saturate one node in u=u

iso
 (resp. in v=v

iso
 ). 

 The new control points obtained by Boehm's algorithm do form the 
control polygon of the iso-parametric curve.

 The nodal sequence of this curve is V (resp. U ).
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B-Spline surfaces

u
iso

=0.4

V={0 ,0 ,0 ,1 ,2 ,3 , 3 , 3} q=2

 Extraction of an isoparametric in u

U={0 , 0 , 0 ,0 ,0.4 ,0.4 ,0.4 ,1 , 2 , 3 ,3 ,3 ,3} p=3U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2
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B-Spline surfaces

v
iso

=0.4

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3

 Extraction of an isoparametric in v

V={0 ,0 ,0 ,0.4 ,0.4 ,1 ,2 ,3 ,3 , 3} q=2
U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2
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B-Spline surfaces

 Computation of the position of a point on the surface

v=0.4u=0.4

V={0 ,0 ,0 ,0.4 ,0.4 ,1 ,2 ,3 ,3 , 3} q=2
U={0 ,0 ,0 ,0 ,0.4 ,0.4 ,0.4 ,1 ,2 ,3 ,3 ,3 ,3} p=3U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3

V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2
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 Subdivision of the surface into independent patches

V={0 ,0 ,0 ,0.4 ,0.4 ,0.4} q=2
U={0.4 ,0.4 ,0.4 ,0.4 ,1 ,2 ,3 ,3 ,3 ,3} p=3

V={0.4 ,0.4 ,0.4 ,1 ,2 ,3 ,3 ,3} p=2
U={0.4 ,0.4 ,0.4 ,0.4 ,1 ,2 ,3 ,3 ,3 ,3} p=3

V={0 ,0 ,0 ,0.4 ,0.4 ,0.4} p=2
U={0 ,0 ,0 ,0 ,0.4 ,0.4 ,0.4 ,0.4} p=3

B-Spline surfaces

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2



64

Computer Graphics

B-Spline surfaces

 Subdivision into Bézier patches
... one must saturate every node of each nodal sequence U and V

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

U={0 , 0 ,0 ,0 ,1 , 1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 3} p=3
V={0 ,0 ,0 ,1 ,1 ,2 , 2 ,3 , 3 ,3} q=2
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B-Spline surfaces

 Continuity requirements for surfaces
 C1 vs C2 – becomes visible when light interaction 

comes into play
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Bézier triangle
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Bézier triangle

 Need for specific topology
 Box corner aka « coin de valise » (in French)

S. Hahmann
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Bézier triangle

 There are several techniques to model the corner
 It's more difficult than one thinks ...
 On may take a regular patch with 4 sides and « limit » it by a triangle 

in the parametric space
 Problem : The surface in question is not built with the control points of 

the other surfaces, so any continuity is difficult to enforce (minimization 
of a non linear functional)

u

v
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Bézier triangle

 Degenerated quadrangular patch
 Normals and derivatives are undefined at the singular point
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Bézier triangle
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Bézier triangle

 Triangular B-splines 
 1992 : works of Dahmen, Micchelli et Seidel

W. Dahmen, C.A. Micchelli and H.P. Seidel, Blossoming begets B-
Splines built better by B-patches, Mathematics of Computation, 59 
(199), pp. 97-115, 1992

 Extension of the definition of B-Splines on triangular surfaces of any 
topology

 Network of control points
 « Mesh » of non structured topology instead of a structured network as 

for B-splines surfaces
 Complex and not usually not implemented in current CAD software, 

therefore not a “standard” tool.
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Bézier triangle

 Triangular Bézier Surfaces
 Example : surface of order 3
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Bézier triangle

 Barycentric coordinates 




 Affine invariance




p

a

cb

p=u⋅av⋅bw⋅c

uvw=1

0≤u , v , w≤1⇔ p  is in the triangle

u=
area ( p , b , c)
area (a ,b , c)

v=
area ( p , c ,a)
area (a ,b ,c)

w=
area ( p ,a , b)
area (a ,b , c)
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Bézier triangle

 Barycentric coordinates

p

a

cb

v

u

w

vuw

v

u
w
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 Decomposition of the Bézier triangle
 Defined by the control points P

i,j,k

 Degree d : i+j+k=d
 Example with d=3 

 Overall,                       control points.

Bézier triangle

P
0,3,0

P
0,2,1

P
1,2,0 

P
0,1,2

P
1,1,1

P
2,1,0 

P
0,0,3 

P
1,0,2

P
2,0,1

P
3,0,0

P
0,3,0

P
0,0,3

P
3,0,0

P
1,2,0 

d2d1
2
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Bézier triangle

 De Casteljau's algorithm on the Bézier triangle
 The P

i,j,k
 are given

 We want to compute P(u,v,w) with u+v+w=1 
 We follow the next algorithm : 

initialize 

for r from 1 to d and for every triplet (i,j,k) s.t. i+j+k=d-r

The point on the surface is the last point :

P i , j , k
r

u , v , w=u P i1, j , k
r−1

⋯v P i , j1, k
r−1

⋯w Pi , j , k1
r−1

⋯

P u , v , w=P0,0 ,0
d

u , v , w

P i , j , k
0

u , v , w=P i , j , k
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Bézier triangle

 De Casteljau's algorithm on the Bézier triangle

P0,0 ,0
d

u , v , w
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Bézier triangle

 Characteristics of the Bézier triangle
 Affine invariance
 Contained in the convex hull of the control points
 Interpolation of extremal vertices
 Edges of the Bézier triangle are in fact Bézier curves
 Algebraic form : another form of Bernstein polynomials

with (recurrence)

P u , v , w= ∑
i jk=d

Bi , j , k
d

u ,v ,w P i , j , k

Bi , j , k
d

u , v , w=
d !

i ! j ! k !
ui v j w k

Bi , j , k
d

u , v , w=uBi−1, j , k
d−1

⋯vBi , j−1, k
d−1

⋯wBi , j , k−1
d−1

⋯

B0,0 ,0
0

u , v ,w =1
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Bézier triangle

 Characteristics (following)
 On the contrary to tensor product surfaces, the Bézier 

triangle is variation diminishing.
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Bézier triangle

 Degree elevation
 The P

i,j,k
 are given, we search the P'

 i,j,k
 corresponding 

to the same surface of degree d+1
 Forrest's relations for the Bézier triangle

P i , j , k
'

=
1

d1
i P i−1, j , k j P i , j−1, kk P i , j , k−1 

P u , v , w= ∑
i jk=d1

Bi , j , k
d1

u , v , wP i , j , k
'

= ∑
i jk=d

Bi , j , k
d

u , v , wP i , j , k
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Bézier triangle

 Subdivision 
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Bézier triangle

 Derivatives
 For tensor product surfaces, partial derivatives are 

computed along u=const or v=const 
 Here, we express directional derivatives for u=const; 

v=const or w=const. - these are not partial derivatives !

Du P u , v ,w =lim
t0

P u , vtdv , wtdw−P u , v ,w 
t
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Bézier triangle

 Case of a surfaces of degree 3

P
0,3,0

P
0,2,1

P
1,2,0 

P
0,1,2

P
1,1,1

P
2,1,0 

P
0,0,3 

P
1,0,2

P
2,0,1

P
3,0,0

P 0,1,0=P0,3 ,0

Du P u , v ,w 0,1,0=3P0,2 ,1−P0,3 ,0

Dv P u , v , w0,1 ,0=3P1,2 ,0−P0,2 ,1

Dw (P (u , v , w))(0,1,0)=3(P1,2,0−P0,3 ,0)

DuuP u , v , w0,1,0 =6P0,1 ,2−2P0,2 ,1P0,3 ,0

Dvv P u , v ,w 0,1,0=6 P2,1,0−2P1,1 ,1P0,1,2

Dww P u , v , w0,1 ,0=6P 2,1 ,0−2P1,2 ,0P0,3 ,0

Duv P u , v ,w 0,1,0=6P1,1 ,1P0,2 ,1−P0,1 ,2−P1,2 ,0

Duw P u , v ,w 0,1,0=6 P1,1 ,1P0,3 ,0−P0,2 ,1−P1,2 ,0

Dvw P u , v ,w 0,1,0=6P2,1 ,0P0,2 ,1−P1,2 ,0−P1,1 ,1

Same at
other corners
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Subdivision surfaces
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Subdivision surfaces

 Parametric surfaces: an explicit representation
 Lightweight
 Discretization algorithms are non trivial... but it is 

necessary for display purposes and in computer 
graphics

 Generally, these surfaces are used in cases where the 
geometric accuracy is essential, as in the computation 
of  intersections and other precise geometric 
primitives

 Modelling operators are non trivial
 In computer graphics, such accuracy is generally not 

needed.
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Subdivision surfaces

 Subdivision surfaces 
 Modelling basis  = elementary mesh
 By successive iterations, this mesh is refined up to the 

accuracy needed for the application
 It is more like an algorithmic description vs. an 

algebraic representation, because the algorithm that is 
used to subdivide the mesh determines the final 
shape and the properties of the limiting surface (ie. 
when the number of subdivisions tends to the infinite)

 Some of these limiting surfaces are equivalent to 
“regular” parametric surfaces, therefore have the 
same “accuracy”.
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Subdivision surfaces

 History
 1974 – George Chaikin

An algorithm for high speed curve generation  

 1978 – Daniel Doo & Malcolm Sabin
(D) A subdivision algorithm for smoothing irregularly shaped polyhedrons
(D&S) Behaviour of recursive division surfaces near extraordinary points.

 1978 – Edwin Catmull & Jim Clark
Recursively generated B-Spline surfaces on arbitrary topological meshes

 1987 – Charles Loop
Smooth subdivision surfaces based on triangles

 2000 – Leif Kobbelt
√3 – subdivision (interpolating scheme)
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Subdivision surfaces

 Chaikin's scheme

George Chaikin, An algorithm for high speed curve generation, Computer graphics and Image 
Processing 3 (1974) , 346-349
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Subdivision surfaces

 Chaikin's scheme
or « Corner-cutting »
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Subdivision surfaces

 Chaikin's scheme

Chaikin's idea was simple : repeating the corner cutting, to the limit, 
one obtains a smooth curve
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Subdivision surfaces

 Chaikin's scheme
 Starting from a polygon having n vertices {P

0
,P

1
, … P

n-1
} , one builds 

the polygon having 2n vertices {Q
0
,R

0
,Q

1
,R

1
, … Q

n-1
,R

n-1
}. This polygon 

serves as a basis for the next step of the algorithm : {P'
0
,P'

1
, … P'

2n-1
}

 The new vertices are  : 

P
0

P
1

P
n-1

P
n

Q
0

R
0

Q
1

R
1

Qi=
3
4

P i
1
4

P i1

Ri=
1
4

P i
3
4

P i1

Q
n-1

R
n-1



92

Computer Graphics

Subdivision surfaces

 Chaikin's scheme
 Riesenfeld (1978) has shown that this algorithm leads at the limit to 

an uniform quadratic B-spline, which exhibits a C1 continuity.

P
0

P
1

P
n-1

P
n

Q
0

R
0

Q
1

R
1

Qi=
3
4

P i
1
4

P i1

Ri=
1
4

P i
3
4

P i1

Q
n-1

R
n-1
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Subdivision surfaces

 Demonstration of the equivalence of Chaikin's scheme 
and uniform quadratic B-Splines

 The B-Spline curve is defined

by :

U={u0 ,⋯ , un2} , ui1−ui=1 , i=0⋯n1

P u=∑
i=0

n

P i N i
2
u

N i
2
u=

u−ui

ui2−ui

N i
1
u

ui3−u

ui3−ui1

N i1
1
u

N i
1
u=

u−ui

ui1−ui

N i
0
u

ui2−u

ui2−ui1

N i1
0
u

N i
0
(u)={1 if ui≤u<ui+1

0 otherwise
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Subdivision surfaces

 It can be rewritten as a “monomial” form : 

with 

 The matrix M
k
 depends on the nodal sequence U. 

P u=∑
i=0

n

P i N i
2
u=∑

k=0

n−2

P k u

Pk u=[1 u u2
]⋅M k⋅[

Pk

P k1

P k2
]

« Portion » of curve

P
0

P
1

P
2

P
3

P
4

P
0
(u)

P
1
(u)

P
2
(u)
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Subdivision surfaces

 Computation of shape functions of degree          for u
2
= 0 ≤ u ≤ u

3
=1

U={u0=−2, u1=−1, u2=0,u3=1,u4=2, u5=3}

N 0
0
=0

N 1
0
=0

N 2
0
=1

N 3
0
=0

N 4
0
=0

d≤2

N 0
1
=0

N 1
1
=1−u

N 2
1
=u

N 3
1
=0

N 0
2
=

1
2
1−2 uu2



N 1
2
=

1
2
12 u−2 u2



N 2
2
=

1
2
u2



M 0=
1
2 [

1 1 0
−2 2 0
1 −2 1]Therefore,

M k=
1

uk3−uk2 [
uk3

2


−

uk3 uk1


−

u k4 uk2



u k2
2



−2
uk3



uk3u k1




uk4u k2


−2

uk2



1


1



1


1


]=u k3−uk1

=u k4−u k2

General case :

with :
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 Binary subdivision of a B-Spline curve for 0 ≤ u ≤ 1
 One has to find the new set of control points for each half of the 

curve
 We set n=2 (number of control points )

 One wants to express                and  
- on each subdivision, the 
parameter u shall be in between 
0 and 1.

P u=[1 u u2
]⋅M⋅[

P 0

P1

P 2
] M=

1
2 [

1 1 0
−2 2 0
1 −2 1]

P[0,1 /2]u P[1 /2,1]u

P
0

P
1

P
2

P[1 /2,1]uP[0,1 /2]u
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 Case of P[0,1 /2]u

P[0,1 /2]u=P u /2=[1 u /2 u2
/4 ]⋅M⋅[

P0

P1

P2
]

=[1 u u2
]⋅[

1 0 0
0 1/2 0
0 0 1/4]⋅M⋅[

P0

P1

P 2
]

=[1 u u2
]⋅M⋅M−1

⋅[
1 0 0
0 1 /2 0
0 0 1 /4 ]⋅M⋅[

P0

P1

P2
]

=[1 u u2
]⋅M⋅[

Q0

Q1

Q2
]  avec [

Q0

Q1

Q2
]=M−1

⋅[
1 0 0
0 1 /2 0
0 0 1 /4]⋅M


S
[0,1 /2]

⋅[
P0

P1

P2
]
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 Case of 

P[1 /2,1]u=P 1u/2=[1 1u/2 1u2/4]⋅M⋅[
P0

P1

P2
]

=[1 u u2
]⋅[

1 1/2 1/4
0 1/2 1/2
0 0 1/4]⋅M⋅[

P0

P1

P 2
]

=[1 u u2
]⋅M⋅M −1

⋅[
1 1 /2 1/4
0 1 /2 1/2
0 0 1/4]⋅M⋅[

P 0

P 1

P 2
]

=[1 u u2
]⋅M⋅[

R0

R1

R2
]  avec [

R0

R1

R2
]=M −1

⋅[
1 1 /2 1 /4
0 1 /2 1 /2
0 0 1 /4]⋅M


S
[1/ 2,1]

⋅[
P0

P1

P2
]

P[1 /2,1]u
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 Finally,

[
Q0

Q1

Q2
]=S[0,1/2]⋅[

P0

P1

P2
]

[
R0

R1

R2
]=S [1/2,1]⋅[

P0

P1

P2
] S [1/2,1]=M−1

⋅[
1 1/2 1 /4
0 1/2 1 /2
0 0 1 /4]⋅M=

1
4 [

1 3 0
0 3 1
0 1 3]

S [0,1/2]=M −1
⋅[

1 0 0
0 1 /2 0
0 0 1 /4]⋅M=

1
4 [

3 1 0
1 3 0
0 3 1] [

Q0

Q1

Q2
]=1

4 [
3 P0P1

P03 P1

3 P1P 2
]

[
R0

R1

R2
]= 1

4 [
P 03 P1

3 P1P2

P13 P2
]

P
0

P
1

P
2

Q
0

Q
1
= R

0
Q

2
= R

1

R
2

P[1 /2,1]uP[0,1 /2]u

One finds the same 
coefficients as in 
Chaikin's scheme...
(except for the indices)

Qi=
3
4

P i
1
4

P i1

Ri=
1
4

P i
3
4

P i1
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 This can be extended to cubic B-Splines
  C2 continuity

P
0

P
1

P
n-1

P
n

E
0

V
0 E

1

V
1

E i=
1
2

P i
1
2

P i1

V i=
1
8

P i
3
4

P i1
1
8

P i2

E
n-1
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 Doo-Sabin scheme
 This is an extension of Chaikin's scheme for a uniform biquadratic B-

Spline surface
 The new mesh is built using the control points resulting from the 

subdivision of the original patch into 4 new sub-patches.

P
00

P
02

P
22

P
20

S
1
(u,v)

S
2
(u,v)

S
3
(u,v)

S
4
(u,v)
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 Expression of the bi-quadratic patch as a monomial form for  0 ≤ u ≤ 
1 and 0 ≤ v ≤ 1:

P
00

P
02

P
22

P
20

S u , v =∑
i=0

2

∑
j=0

2

N i
2
uN j

2
v P ij

U=V={−2,−1,0 ,1 ,2,3}

S u ,v =[1 u u2
]⋅M⋅[

P0v 
P1v
P2v ]

M=
1
2 [

1 1 0
−2 2 0
1 −2 1 ]Again,

S u ,v =[1 u u2
]⋅M⋅[

P00 P 01 P02

P10 P 11 P12

P20 P 21 P22
]⋅M T

⋅[
1
v
v2]

N 0
2
t =1

2
1−2 tt 2



N 1
2
t =

1
2
12 t−2t 2



N 2
2
t =

1
2
t 2


v

(with t = u or v )

u
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 Subdivision - patch S
1
(u,v)

P
00

P
02

P
22P

20

S
1
(u,v)

S1u ,v =S u/2,v /2=[1 u /2 u2
/4 ]⋅M⋅P⋅M T

⋅[
1

v /2
v2
/4] P=[

P00 P01 P 02

P10 P11 P12

P 20 P21 P 22
]

S1u , v =S u/2,v /2=[1 u u2
]⋅C⋅M⋅P⋅M T

⋅CT [
1
v
v2]

=[1 u u2
]⋅M⋅M −1 C⋅M⋅P⋅M T

⋅C T
⋅M −1


T
⋅M T

⋅[
1
v
v2]

=[1 u u2
]⋅M⋅M −1 C⋅M ⋅P⋅M −1

⋅C⋅M 
T
⋅M T

⋅[
1
v
v2]

=[1 u u2
]⋅M⋅P '⋅M T

⋅[
1
v
v2] P '=S⋅P S T S=M−1C⋅M

C=[
1 0 0
0 1 /2 0
0 0 1/4]
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 Finally,

 Same developments should be done with the 3 other 
quadrants, and will lead to the same “structure”

P '=S⋅P S T

P
00

P
02

P
22

P
20

S
1
(u,v)S=M−1

⋅C⋅M=
1
4 [

3 1 0
1 3 0
0 3 1]

P '=
1
16 [

3 1 0
1 3 0
0 3 1]⋅[

P 00 P01 P02

P10 P11 P12

P 20 P21 P 22
]⋅[

3 1 0
1 3 3
0 0 1]

P '=
1
16 [

3(3 P 00+P10)+3 P 01+P11 3 P 00+P10+3(3 P 01+P11) 3(3 P01+P11)+3 P02+P12

3(P00+3 P10)+P01+3 P11 P00+3 P10+3(P01+3 P11) 3(P01+3 P11)+P02+3 P12

3(3 P10+P 20)+3 P 11+P 21 3 P10+P20+3(3 P11+P 21) 3(3 P 11+P 21)+3 P12+P 22
]

P'
00

P'
20

P'
22

P'
02
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 Subdivision - patch S
2
(u,v)

S 2(u , v )=S (u /2,(1+v)/2)=[1 u /2 u2
/4]⋅M⋅P⋅M T

⋅[
1

(1+v)/2
(1+v)2/4] P=[

P00 P01 P 02

P10 P11 P12

P 20 P21 P 22
]

S 2(u , v )=S (u/2,(1+v)/2)=[1 u u2
]⋅C u⋅M⋅P⋅M T

⋅C v
T [

1
v
v 2]

Cu=[
1 0 0
0 1 /2 0
0 0 1 /4]

=[1 u u2
]⋅M⋅(M−1C u⋅M )⋅P⋅(M−1

⋅C v⋅M )
T
⋅M T

⋅[
1
v
v2 ]

=[1 u u2
]⋅M⋅Q '⋅M T

⋅[
1
v
v 2] Q '=S u⋅P S v

T S u=M−1 Cu⋅M

C v=[
1 1 /2 1 /4
0 1 /2 1 /2
0 0 1 /4]

S v=M−1 C v⋅M
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Q '=S u⋅P S v
T

P
00

P
02

P
22

P
20

S
2
(u,v)

S u=M−1
⋅C u⋅M=

1
4 [

3 1 0
1 3 0
0 3 1 ]

Q '=
1

16 [
3 1 0
1 3 0
0 3 1]⋅[

P 00 P 01 P02

P 10 P 11 P12

P 20 P 21 P 22
]⋅[

1 0 0
3 3 1
0 1 3]

Q'
00

Q'
20

Q'
22

Q'
02

S v=M−1
⋅C v⋅M=

1
4 [

1 3 0
0 3 1
0 1 3]

Q '00=3(P00+3 P 01)+P10+3 P11

( =P ' 01=3 P00+P 10+3(3 P 01+P11) )

 Some of the points (2) are already computed, e.g. 
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 Extension to meshes showing an arbitrary topology

 The new vertices are obtained as a simple arithmetic mean of 3 
categories of vertices :

 The vertices of the old mesh
 Vertices on the edges (barycentre of the extremities of the edge)
 Vertices inside a face (barycentre of the vertices of the face)

P
00

P
02

P
22

P
20
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 Extension to meshes showing an arbitrary topology
1 – Computation of the vertices P' (for each vertex P, compute the 
mean between  P, the vertices on the adjacent faces, and the 
vertices on adjacent edges)
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Subdivision surfaces

 Extension to meshes showing an arbitrary topology
2 – For each face, link the corresponding vertices P'
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Subdivision surfaces

 Extension to meshes showing an arbitrary topology
3 – For each old vertex, connect the new ones that have been 
created for each adjacent face to this old vertex.
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 Extension to meshes showing an arbitrary topology
4 – For each old edge, connect the new vertices that have been 
created for each adjacent face to this old edge.
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 Some points on the mesh and the limiting surface are  
« extraordinary » 

 These are vertices with a valence (number of incident edges) that is 
different from 4.

 Everywhere the continuity of the limiting surface is C1 ; except at 
extraordinary points, where it decreases to C0.

Im
ag

e 
: w

ik
ip

ed
ia
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 Catmull-Clark scheme
 Similar idea for bicubic B-Splines.

P
00

P
33

P
03

P
30
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« face » vertices

« edge » vertices

« corner » vertices

- « Face » vertices are at the barycentre
 of the vertices of that face:

- « Edge » vertices are at the 
barycentre of the extremities of the 
edge and the two « Face » vertices 
of the adjacent faces :

- « Corner » vertices are positioned 
such that :

P f=Q

Pe=
QR

2

Pv=
Q2 Rn−3S

n
Q = mean of the barycentre of the incident faces 
R = mean of the barycentre of the incident edges
S = original vertex
n = number of incident edges to S.

 Three types of vertices
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 Reconnecting the new vertices

1 – Connect the « face » vertices to the « edge » vertices of 
neighbouring edges

2 – Connect the « corner » vertices to the « edge » vertices of 
incident edges

Im
ag

es
 : 

K
en

 J
oy

 -
 U

C
L

A
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 As with Doo-Sabin surface, the continuity is degraded for some 
extraordinary vertices. The bicubic surfaces are therefore C2 
everywhere except at extraordinary points : it is then only C1.

Im
ag

es
 : 

Im
or

as
a 

S
uz

uk
i
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 Loop's scheme
 Allows to subdivide triangular meshes
 The limiting surface is C2 , except at extraordinary vertices of  

valence <>6 , where it is only C1. 
 The principle is to subdivide triangles into 4 sub-triangles.

 Corner vertices and edge vertices are created (in red).1
1

1

1
1

1

10
V 1
=

10 V +Q1+Q2+Q3+Q4+Q5+Q6

16

=
5
8

V +
3
8

Q

E 1
=

6V 1+6V 2+2 F 1+2 F 2

16

6
6

2

2

V1

E1
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 As such, works only for vertices with a valence equal to 6
 It may be extended to other valences, but the formula has to be 

adapted such that the resulting surface is smooth.
 Let 

with

n is the valence of the original vertex.
 On boundaries : vertices should not move inside the surface, they 

should rather slide along the boundary. One recovers the classical 
cubic B-Spline scheme in that case

V 1
=αnV+(1−αn)Q

αn=( 3
8
+

1
4

cos
3π
n )

2

+
3
8

E 1
=

V 1+V 2

2

E11 61

V1

11 V 1
=

6
8

V +
Q1

*
+Q2

*

8

(only if the vertices 
are neighbours 
on the boundary)
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 Loop's scheme
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 Kobbelt's       scheme 
 See paper on the course's website
 For a similar level of refinement, it generates less triangles than 

Loop's scheme

√3
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 Subdivision surfaces in CATIA

 A very easy-
to-use design 
tool

 As S-s are 
equivalent to 
some class of 
B-Spline 
surfaces, 
they retain a 
good degree 
of accuracy

 “CATIA 
Shape” 
module 
Imagine 
Shape (IMA) 
tool
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 Catia in architecture
 Frank O. Gehry (Fish sculpture , Barcelona ,1992)
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Architectural applications

 Catia in architecture
 Frank O. Gehry (Guggenheim museum, Bilbao ,1997)
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Architectural applications

 Catia in architecture
 Frank O. Gehry (Guggenheim museum, Bilbao ,1997)
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Architectural applications

 Catia in architecture
 Frank O. Gehry (Walt Disney concert hall, Los 

Angeles ,2003)

C
arol M

. H
ighsm

ith



126

Computer Graphics

Ray tracing



127

Computer Graphics
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 Ray tracing principles
 Intersection of a ray shot from the eye with the objects 

in the scene

Objects in the 
scene

Ray of vision

illum
ination

Visible Point

Observer

Light sources
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 Algorithm 
For every pixel
{
  calculate the ray of vision
  intersect the ray with the scene
  calculate the illumination of the visible point
  display the colour that is obtained
}

View plane (screen)
nx*ny pixels
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 Ray calculation

Point of view

View plane (screen)

Pixel position

Vision ray

View plane (screen)

Pixel position

Vision ray

Perspective projection

Orthographic projection
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 Ray calculation – orthographic projection 
 We shall calculate the position p in the plane of the screen, and the 

vector v

 A parametric equation is used

 But where is the screen in 3D space?

View plane (screen)

p

d

r t =pt d
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 Ray calculation – orthographic projection 
  Determination of the view plane

 A reference linked to the camera is established : (e,u,v,w)
 The view plane is in the u-v plane ; that is specified by the values   l, r, t, 

b (see course on homogeneous coord. )
 The ray is then expressed as a

function of the  (u, v) coordinates

e

w u

e
v

       v=t

u=
r

       v=b

u=
l

p=euuv v
d=−w

r t =pt d
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 Ray calculation – perspective projection 

s
View ray

e=p

d=s-e

r t =pt d
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 Ray calculation – perspective projection
 Determination of the view plane 

 The coordinates of s are (u,v,-d)
 The ray is then expressed as a

function of the (u, v, w) coordinates

 of the pixel s

w u

v

       v=t

u=
r

       v=b
u=

l

s=euuv v− d⋅w
p=e
d=s−e

r t =pt d

e

d
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 From the pixel to the picture

(0,0) (1,0) (2,0)

(0,1) (1,1)

i = -0.5

j = -0.5

i = 3.5

j = 3.5

u = l u = r

v = b

v = t

u=l
r−l i0.5

n x

v=b
t−b j0.5

n y



135

Computer Graphics
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 Intersection calculation
 Rays intersect scene objects



136

Computer Graphics

Ray tracing

 The ray has a parametric equation

 t>0 is needed to form a half-line
 A ray is directional

r t =pt d
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 Ray – sphere intersection
 Condition 1: to be along the ray

 Condition 2: to be on the surface of the sphere

 We substitute and transfer

 Quadratic equation in t

r t =pt d

∥x∥=1⇔∣x∣2=1

f x=x⋅x−1=0 Implicit form

pt d⋅pt d−1=0
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 Ray – sphere intersection
 SolutionS for t :

 Take the nearest solutions (t
min

) located on the “good”  
side of the ray (t>0)

t=
−d⋅p±d⋅p2−d⋅dp⋅p−1

d⋅d

t=−d⋅p±√ (d⋅p)2−p⋅p+1    if d  is unitary
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 Ray – box intersection
 It could be individually done by computing the 

intersections with the 6 faces 
 It is easier to do the intersections with the three 

"slices"
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 Ray – slice intersection

ymin

ymax

xmin xmax

t ymin

t xmin

t ymax

t xmax

r t =pt d⇔{r x t = pxt d x

r y  t = p yt d y

pxt xmin d x=xmin

t xmin=xmin− px/d x

t xmax=xmax− p x/d x

p yt ymin d y= ymin

t ymin= ymin− p y/d y

t ymax= ymax− p y/d y
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 We have intersections with the slices. How to get the 
intersections with the box?

 Combine the results ...
 The exit point of the ray is the smallest 
 The entry point of the ray

 is the largest

 It must also verify
t ymin

t xmin

t ymax

t xmax

t *min

t *max

tmax≥tmin

tmin=max t xmax , t ymax

tmax=min t xmax , t ymax
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 Ray – triangle Intersection 
 Condition 1: to be along the ray

 Condition 2: to be on the plane 
of the triangle

 Condition 3 : to be inside the triangle
 We solve 1&2

r t =pt d a
n

x−a⋅n=0

pt d−a ⋅n=0

t=
(a−p)⋅n
d⋅n
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 Inside the triangle (oriented ...)
 Intersection of three half - planes
 We verify that we are

 in each half plane

or with the scalar triple product : 
b

b−a ×x−a ⋅n0
c−b×x−b⋅n0
a−c×x−c⋅n0

b−a ,x−a ,n0
c−b ,x−b ,n0
a−c ,x−c ,n0

a

c
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 Ray – triangle Intersection 
 Has to be fast
 Has to be robust
 There are a number of efficient algorithms

 Cf course website for pdfs

T. Möller and B. Trumbore. Fast, Minimum Storage Ray-Triangle 
Intersection. Journal of Graphic Tools, 2(1), 21–28, 1997.
E. Galin, S. Akkouche, Fast processing of triangle meshes using triangle fans, 
Intl Conf. On Shape Modeling and Applications, 2005
M. Shevtsov, A. Soupikov and A. Kapustin, Ray-Triangle Intersection 
Algorithm for Modern CPU Architectures , GraphiCon International 
Conference on Computer graphics & Vision, 2007
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 Raytracing basis :
Let S be a sphere(O,r)
For each pixel of the screen i,j
{
  ray r=camera.calculate_ray(i,j)
  S.intersect(r,0,+infinite,test_intersect,t)
  if (test_intersect) is true
    colourize the pixel i,j in white
}  



146

Computer Graphics

Ray tracing

 Intersection with many primitives
 For a given direction, we want the nearest intersection 

of the observer ... the idea is the following :

 This algorithm is linear with respect to the number of 
primitives (there are better algorithms, see later)

group.intersect(r,tmin,tmax, tbest,nearest_surface)
{
  initialize tbest to +infinite
  initialize nearest_surface to « nothing »
  For each primitive s
  {
    Calculate the intersection of s with the ray r 
    intersection = s.intersect(r,tmin,tbest)
    if (intersection) tbest = t ; nearest_surface = s
  }
}
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 Modification of ray-tracing and image obtained
Let be S a scene
For each pixel of the sreen i,j
{
  ray r=camera.compute_ray(i,j)
  c=S.getcolor(r,0,+inf)
  colourize the pixel with colour c
}  

Scene.getcolor(r,tmin,tmax)
{
  group.intersect(r,tmin,tmax,surf,t)
  if (surf isn't empty) return the colour of 
the surface
  else return the black colour
}  
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 Shades
 We must consider the illumination of surfaces by one 

or more lights
 The color returned to the observer depends on : 

 the surface (material, colour)
 the angle of view
 angle of the light source
 the surface normal.
 These parameters are associated 

with a model to calculate the color
perceived by the observer

 This model can be empirical or based 
on physical considerations

nv l
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Physical quantities associated with the 
propagation of light
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 What is the appropriate size or units
to represent 
a colour or brightness?
 Power (W) ?
 Radiosity  (           ) ?
 Radiant intensity  (           ) ?
 Radiance (                  ) ?
 All these units assume the independence of the eye’s 

sensitivity to the wavelength. This is obviously not 
true!

Note : The solid angle of a cone is measured in steradians: it is the 
measure of the intercepted surface by a unit radius sphere centred 
on the apex of the cone.

W⋅m−2
⋅sr−1

W⋅sr−1

W⋅m−2
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 We prefer to use a different base unit that is the 
candela or lumens per steradian ; 

 1 lm = f(emission spectrum) * 1 W, is an SI unit 
connected to the watt via a multiplicative factor 
depending on the so called “standard observer”
 Luminous flux  (Lumen = lm) 
 Luminous intensity (                  )
 Illuminance  (             ) 
 Luminance (                  ) lm⋅m−2

⋅sr−1

lm⋅m−2

lm⋅sr−1
=cd
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 Radiance / Radiometry                 or
 Physical measurement of the electromagnetic energy
 unit based on the SI watt
 Laws of conservation of energy

 Luminance / Chroma
 Perceptual measurement of the quantity of light at 

different wavelengths
 Units are based on the SI lumen
 Conservation laws if no fluorescence (change of 

wavelength of the light by fluorescent chemical 
compounds)

W⋅m−2
⋅sr−1

⋅(nm)−1

lm⋅m−2
⋅sr−1

=cd⋅m−2

W⋅m−2
⋅sr−1
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 A 100 W incandescent lamp
 1500 lumens or about 120 candelas if it emits uniformly in all 

directions.
 Only a part of the light energy is emitted in the visible spectrum (the 

rest is in infrared)

 A 21W fluorescent compact lamp
 About 1500 lumens too !
 Almost all of the energy is emitted in visible light

 Relationship between physical 
intensity and perceptual intensity

I v=683.002∫
0

∞

I  y d 

W⋅nm−1lm
lm /W
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 Luminance (radiance) is the power per unit area 
oriented perpendicularly to the ray; per unit solid angle

d ω⃗

dA

n⃗

L( x ,ω)=
d 2
Φ

d ω⃗⋅⃗n dA
=

d 2
Φ

d ωcosθdA

d ω⃗

dA

n⃗

Lumen or watts

m2steradians

θ
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 If the surface uniformly emits (constant L ) a power 
dQ, this relationship is verified:

d

dA

n

d

dA

n θ

dQ=∫ d2
Φ=∫ L dω cosθdA

dQ=∫
0

π
2

∫
0

2 π

L cosθsinθd ϕ d θdA

dQ=2π⋅L∫
0

π
2

sinθ cosθd θdA=π L dA
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Quiz : 
 Does Radiance / 

luminance increase if 
the sunlight is 
concentrated with a 
magnifying glass?

 Do radiance / luminance 
of an illuminating surface 
depend on the visible 
area (or the viewing 
distance)?
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 Conservation laws for luminance
Experience on the perception of light



r

Emits light uniformly in all 
directions

L=
P (lumens)

S (m2 )⋅π (sr)

Sensor
Signal in Volts
U=g.P

c
diaphragms

 a

A
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 Conservation laws for luminance

 Solid angle of the sensor seen from the surface

 Light power entering the sensor

 The result does not depend on the distance!
 Luminance (or radiance) are preserved



r

 a

A

dA

dPc=⋅dA⋅L

=
 a

r 2



Pc=∫
A

δω⋅dA⋅L=δω⋅A⋅L=δω⋅r2
⋅σ⋅L

=δ a⋅σ⋅LSensor geometry
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 Conservation laws for luminance

 If a perfect lens is inserted:

 Light power entering the sensor

 The result does not depend on the optical path!



r

 a

A'

dA'

 '=


k

 '

Pc '= '⋅A'⋅L=⋅A⋅L=Pc

A'=k⋅A
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 Some characteristic values of the luminance
 Surface of the Sun: noon and clear atmosphere

( out of atmosphere :                                      )
 Full moon at midnight
 TV screen, computer etc…
 A 2000 lumens multimedia projector, with a 2m*1.5m projection 

screen , perfectly reflecting (albedo=1), light scattering by Lambert’s 
law

 Luminance of a blank sheet of A4 paper (albedo = 0.6) exposed 
perpendicularly to the sun rays (                        ), perfectly diffusing

 In reality, closer to                                      , because paper is not 
perfectly diffusing (a fair part of the incoming flux is reflected mirror-
like, thus decreasing the amount of diffuse reflection)

Lν

0 ~ 2⋅109 lm⋅m−2
⋅sr−1

LTV=50 ~ 500 lm⋅m−2
⋅sr−1

Lm ~ 4000 lm⋅m−2
⋅sr−1

L p=
2000

1.5⋅2⋅π
~ 200 lm⋅m−2

⋅sr−1

Lν~ 1.6⋅109 lm⋅m−2
⋅sr−1

L f ~ 0.6
1.6⋅109

⋅6⋅10−5

π ~ 18000 lm⋅m−2
⋅sr−1

Ων~ 6⋅10−5 sr

L f ~ 10000 lm⋅m−2
⋅sr−1
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 During the restitution (display), a signal in volts  U  is 
converted to light intensity.

 Let state that the emission of light is uniform and made in all 
directions, so the luminance is given by

Screen pixel s

U

Pe=g ' (U )

L=
Pe

s⋅π
=

g ' (U )

s⋅π
=g ' ' (U )

Depends only on the 
geometrical and physical 
characteristics of the "pixel"

Emitted power 
(Lumens ou watts)

gain, depends on 
physical properties
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Conclusion :
 Luminance is the right variable to "display" in order to 

accurately reflect the reality
 When using ray tracing, this is the adequate physical 

variable that is associated with a ray and is 
computed / transported along the ray.
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Some laws of light reflection
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 Incident light
 Lambert’s law (Jean-Henri Lambert 1728-1777)

The upper face receives
 a quantity of light


l

n

The upper face
receives a fraction of the
quantity of the emitted light cos=l⋅n

In fact, the upper face
receives a quantity of light
Proportional to

In all cases, the incident light is reflected in all directions with the same intensity
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 Perfectly diffuse surface model
 Also called Lambertian Surface
 It reflects light "equitably" in all directions
 The appearance (brightness)

 is not depending on
 the position of the viewer n

v l
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 Lambertian surface model
 Quantity of light received by elementary surface

 This is re-emitted with a uniform
luminance pattern

n
v l

d 

d

ds

dQ=Li⋅d ε⋅cosθ⋅ds (Lumens)

d ε=
dS

d 2

Surface dS

Ld=
dQ

ds⋅π
=Li⋅cosθ

d ε
π =cosθ I i

I i=Li⋅
d ε
π =Li⋅

d S

π d 2
is the incident illumination.
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 Lambertian surface model
 This surface has a color and 

an albedo (coefficient of reflection)

n
v l

Ld=A I max n⋅l , 0

Incident 
illumination (lm/m2)

Coefficient linked 
to the albedo

Light (luminance) diffused
towards the observer

*The albedo is the ratio between the quantity of incident and reflected energy quantity (between 0 and 1)

Ld=k d I
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 Lambertian surface : Physical explanation
 Rough surface (no mirror effect)

 Penetration of the light rays
 diffusion by particles

( The particles and the matrix give the color of the surface ! )
 A fraction of the light rays manage to get out

(parameter A of the Lambert model
 Everything happens at a very fine scale
 The outgoing light rays

can be considered as
coming out exactly 
from the point of entry

~ 10m



169

Computer Graphics

Ray tracing

 Limits of the lambertian model
  Not adaped to conditions of grazing light...

 The lambertian model tends towards zero reflection...which is mostly 
inaccurate with usual surfaces

 e.g. Moon’s surface : the luminance of the edges do not vanish ! (on a 
full moon)

 Non-conductive surfaces (not metallic)
 "Rough" plaster, frosted ceramic, etc., bitumen, "rough" concrete, 

opaque and frosted glass



170

Computer Graphics

Ray tracing

 Lambertian surface : matt appearance
 The returned luminance depends only on the position 

of the source.

v l

A=0.4 A=0.6 A=0.8 A=1.0
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 Other models of diffuse reflection
 Oren-Nayar model

 Includes inter-reflection on the surface irregularities ... adds a roughness 
parameter.
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 Lambertian surface : colour
 Albedo coefficient different for the three primary colors
 In practice, a single fixed coefficient (A) multiplied by a 

coefficient depending on each colour (triplet 
representing the colour of the material) are used


Ld

R

Ld
G

Ld
B =A

C R
⋅I R

CG
⋅I G

C B
⋅I B max n⋅l ,0

~ Colour of the incident light~ Colour of material
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 Image obtained with Lambertian shading
Scene.getcolor(r,tmin,tmax)
{
  group.intersect(r,tmin,tmax,surf,t)
  if (surf non empty) 
  {
    point = r.eval(t)
    normal=surf.give_normal(point)
    return surf.shading(r,point,normal,source)
  }
  Else return the background color
}    

surface.shading(ray,point,normal,source)
{
  v = -normalize(ray.direction)
  l = normalize(source.position-point)
  // calculate the lambertian shading
  return the colour
}
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 References

J. H. Lambert. Photometria sive de mensure de gratibus luminis, colorum umbrae. 
Eberhard Klett, 1760

P. Kubelka and F. Lunk. Ein Beitrag zur Optik der Farbanstriche. Z. Techn. Physik, 
12:593-601, 1931

S. Orchard. Reflection and transmission of light by diffusing suspensions. J. Opt. Soc. 
Am., 59:1584-1597, 1969

J. Reichmann. Determination of absorption and scattering coefficients for non 
homogeneous media. Applied Optics, 12:1811-1815, 1973.

M. Oren and S. K. Nayar “Generalization of Lambert’s reflectance model”, ACM 
SIGGRAPH 1994 Proceeding.
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 Shadows ...
 The surfaces are not aware if something blocks the 

light from the light source
 We have all we need to add a small test !
 Construct a ray from the lamp through the current 

point on the surface and check that it does not 
intersect any other surface in between...
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 Lambertian shading + shadows

surface.shading(rayon,point,normal,source)
{
  shadow_ray = ray(point,source.position – point)
  group.intersect(shadow_ray,tmin,tmax,t,surf)
  if surf is empty
  {
    v = -normalize(ray.direction)
    l = normalize(source.position-point)
    Calculate the lambertian shading
    return the obtained colour
  }
  else return black colour
}
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 Shadows
 Be careful when searching intersection of the ray from 

the light source
 Is the numerically calculated intersection point with the ray from the 

observer located exactly on the surface ?
 If it is a little bit toward the "outside", then everything goes as 

planned
 If it is a little bit toward the "inside," then we find an intersection for 

the ray from the source ...
 Solution :

ensuring that the beam used for 
computing shadows starts at a small
distance from the surface 
(toward the outside)
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 Shadows – correct treatment !

  shadow_ray = ray(point+normal*epsilon,
                               source.position – point)
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 Multiple light sources
 Important to "fill-in" shadows
 Very simple implementation: for each light, add the 

corresponding contribution

 Ambient shading
 A perfectly dark shadow is unrealistic

 Solution 1 : place a small source of light just next to the camera
 Solution 2 : add a constant contribution to shading determined  

somewhere else

La=k a I a

Ambient reflected 
light Ambient coefficient

Ambient light
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 Multiple light sources

surface.shading(ray,point,normal,sourceS)
{
  colour= ambient // eventuality black !
  For each source in sourceS
  {
    if not in shadows (see previously)
    {
      v = -normalize(ray.direction)
      l = normalize(source.position-point)
      calculate the lambertian shading
      colour = colour + calculated shading
    }
  }
  return colour
}
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 Specular reflection 
 Light directly reflected from the surface (that do not 

penetrate the material)
 For relatively smooth surfaces

 These surfaces reflect light preferentially in one direction

 The preferred direction is symmetric like for a mirror  : 

v
l

n

 '

= '
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 Specular reflection : physics
 The surface is perfectly smooth: mirror

 All the light from the source is reflected in one direction - special 
case (see later)

 Some materials have a specular reflection that shows  
a diffuse spot

 Even for pointwise sources !
 There is dispersion of the 

orientation of the reflected light
(on either side of the 
theoretical angle)

 This is due to the presence 
of micro facets at the 
surface of the solid

The statistical distribution of the orientation 
of micro facets gives the size of specular point
for a pointwise light source
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 Specular reflection : physics
 The reflected colour is dominated by the colour of the 

incident light
 The color of an object comes mainly from the partial absorption of 

the transmitted rays in the matrix of the object (plastics, etc ...)
 However, the reflection coefficients are also dependent on the 

visible wavelengths for some materials
 Copper, gold ...

visible
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 Specular reflection (Blinn-Phong model)
 Purely phenomenological model
 The mirror configuration implies that the  h , the 

bisector of v and l , is close to the normal n.
 The Blinn-Phong model is then : 

h=
vl
∥vl∥

k s=C s max0, cos p

=C s max0,n⋅h p

v
l

n
h



Specular component of the 
 reflected Light 

Specular coefficient

Phong exponent
sometimes called "hardness"

Ls=k s I

includes the term
                     !max n⋅l ,0
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 Specular reflection (Blinn-Phong model)
 The Phong exponent relates to the sharpness of the 

lobe

-90 +90
0

1

cos cos2
 cos8

 cos64

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 Specular reflection (Blinn-Phong model)

C s

p
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 Specular reflection (Blinn-Phong model)
 If  p is increased, we tend to a perfect mirror

 But only light sources are reflected!
 p is related to the smoothness of the surface

 The model drifts away from the reality for increasing p
 (we should see reflections of other objects in the scene!)

 It is useful for modelling plastic, "wax"-like surfaces,  
rubber, etc....
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 Others models
 Phong model produces realistic results but does not 

match any physical law
 Approximately, it approaches a Gaussian distribution of the 

orientation of micro facets that would give :

                                                   , m is a parameter between 0 and 1.
 Beckmann distribution: built on physical considerations

m is the average slope of micro facets.

k s=C s e
− m 

2

max n⋅l ,0 

k s=C s Db maxn⋅l ,0 Db=
1

4m2 cos4


e
− tan

m 
2
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 Cook-Torrance models
 Based on the distribution of Beckmann

+ Fresnel terms (partially reflected wave as a function 
of the angle of incidence)

+ terms corresponding to the self-shadowing 
(projected shadows by the micro facets on other mf.)

R. Cook and K. Torrance “A Reflectance Model for Computer Graphics” ACM Transactions 
on Graphics, volume 1, number 1, January 1982 pages 7-24 

k s=C s Rs

Rs=
Db F G

v⋅n

F=F 01−h⋅v 
5
1−F 0

Reflectance at normal incidence

G=min 1,
2h⋅nv⋅n

h⋅v
,
2 h⋅nl⋅n

h⋅v 
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 Self-shadowing

Process 2
Process 1
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 Ward model
 Includes anisotropy

 The micro facets are preferentially oriented
 Model for e.g. brushed metal.
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 References

Beckmann and Spizzichino “The scattering of electromagnetic waves from rough surfaces.” 
MacMillan, New York, 1963, pages 1-33 and 70-98. 

Phong B.T. “Illumination for Computer Generated Images” 1973
                    “Illumination for computer generated pictures” ACM June 1975
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R. Cook and K. Torrance “A Reflectance Model for Computer Graphics” ACM Transactions 
on Graphics, volume 1, number 1, January 1982 pages 7-24

G. Ward “Measuring and Modelling Anisotropic Reflection” , Computer Graphics 26, 2, July 
1992  
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 Specular reflection (Blinn-Phong model)
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 Specular reflection (Blinn-Phong model)
 “Faceted” aspect

 We must significantly increase the resolution to use the Phong 
model on geometries that are faceted to get a realistic result

 Or It is necessary to know the exact geometry ...
 It is very computationally expensive

 There is an alternative: Phong interpolation
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 Phong interpolation
 Faceted exact geometry = geometry + error term

 The position error is small (we can barely see it)
 On the contrary, the error on normals is considerable

 The normal is constant on each facet !!

 Phong proposes to linearly interpolate the normal in 
every facet from normal at the vertices of the facet

 These are known if we have the
exact geometry

 If not, we take the "average"
normal of connected facets

a

b
c

n
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 Phong interpolation


 u and v are calculated at the intersection of the ray 
and the facet

 n
a
, n

b
 , n

c
 (, n

d
 ) are precalculated (before the ray 

tracing itself) a

b
c

n*
=(1−u)nc+(1−v)nb+(1−u−v)na      (Triangles)

n=
n*

‖n*‖

n

n*
=(1−u)(1−v)na+u(1−v)nb+u v nc+v (1−u)nd     (Quads)
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 Phong interpolation

surface.shading(ray,point,normal,sourceS)
{
  colour= ambient // eventually black !
  For each source in sourceS
  {
    If not in shadow (cf previously)
    {
      v = -normalize(ray.direction)
      l = normalize(lamp.position-point)
      n=calculate_normal(point)
      calculate the shading (phong, lambertian, etc...)
      colour = colour + calculated shading
    }
  }
  return colour
}
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 Gouraud inteprolation
 Same idea as Phong interpolation
 We're working on the color obtained at the vertices of 

the facet that are interpolated, instead of the normals
 Does not work with the Phong shading!
 Not used in ray tracing
 Advantage: very fast
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 All in all ... it usually takes ambient, diffuse and 
Phong shading in the same model to have 
something natural.
 Perceived brightness is a sum :

 Sum   over all visible light sources from the point

L=LaLdLs

=k a I ak d I max 0,n⋅l k s I max 0,n⋅hp

L=La∑
i

[Ld iLsi ]

=k a I a∑
i

[ k d I i max 0,n⋅lik s I i max 0,n⋅hi
p ]
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 Smooth surfaces
 Example : mirror

 Perfectly specular reflection
 The phong model is too far from the reality (infinitesimal dimension if 

the point sources)

 We can model this by starting a new ray.
 The direction is the same as the one calculated in the model of 

Phong
 The colour of the point is the color seen from that point in the 

direction of reflection

 Some materials have a "glossy" appearance
 Combination of a mirror behavior and  Lambertian + ambient

L=LaLdLm
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 Model for smooth surfaces 
 The intensity depends on the angle of

incidence and material indices
 Transparent dielectric materials (Fresnel - Snell)

 Schlick’s  approximation :                                            with 

 For electric conductors: almost total reflection (or constant 
depending on the angle): a first approximation.

v

n

1 r

km
perp
= n1 cos1−n2 cos2

n1 cos1n2 cos2

2

2

km
para
= n2 cos1−n1 cos2

n2 cos1n1 cos2

2

n1sin 1=n2sin 2

r=v2 n⋅vn−v 
=2 n⋅vn−v

Lm=k m I i

k m=cste

Polarization 
perpendicular to 
the incidence 
plane

Polarization 
parallel to the 
incidence plane

km=k m
perp
km

para
/2 k t=1−k m

perp
k m

para
/2

km
sch
=k 01−cos1

5
1−k 0 k 0= n2−n1

n2n1

2

indice n1

indice n2
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 Model for smooth surfaces

Brewster 
angle

1
90°0°

k

1

0

k m
para

km
perp

km

k m
sch

km
perp
= n1 cos1−n2 cos2

n1 cos1n2 cos2

2

k m
para
= n2 cos1−n1 cos2

n2 cos1n1 cos2

2

k m=km
perp
km

para
/2

km
sch
=k 01−cos1

5
1−k 0
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 Refraction/Reflection
 Each ray is split (if conditions are met)

 Without control, for each emitted ray, a large number of rays is 
generated recursively

 We may limit that number by counting the number of reflections / 
refractions and stop after a certain value is attained

 We may limit by "killing" the rays whose attenuation is above a 
certain threshold.
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 Plane that is slightly reflective

+ Lambert model
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 Justification of the Lambertian model
 Kubelka and al. 1931: model layers and and does not consider the 

surface reflection,                    are the fractions of the incident and 
reflected wavelength absorbed per unit length in the medium.

 Reichmann 1971: includes the term of the surface reflection

        is the internal reflectance of the material (cf Orchard.1969)
 Complex ? Assume that the incident wave is not absorbed by the 

medium : so                              and then                             : what is 
not reflected from the surface is sent in all directions independently 
of the orientation.

RB(θ ,λ)=(1−Rs)
C (θ ,λ)(1−r i(λ))(R∞(λ)−D(θ))

2(1−r i(λ)R∞(λ))cosθ

withC (θ ,λ)=
ω(λ)cosθ(2 cosθ+1)

1−4(1−ω(λ))cos2
θ

 and D (θ)=
2cosθ−1
2 cosθ+1

R∞(λ)=
2−ω(λ)−2 √ 1−ω(λ)

ω(λ)
 with ω(λ)=

β(λ)

α(λ)+β(λ)

0 ,  1

ri 

  ,  

RB  ,=1−Rs

Reflectance : « ratio between the incident and reflected luminance »


