
1

Computer Graphics

Course outline

 Introduction
 Images and display techniques

 Bases
 Gamma correction
 Aliasing and techniques to remedy
 Storage

2

Computer Graphics

Course outline

 3D Perspective & 2D / 3D transformations
 Go from a 3D space to a 2D display device

 Two paradigms for image synthesis
 Representation of curves and surfaces

 Splines & co.
 Meshes

 Realistic rendering by ray tracing
 Concepts and theoretical bases

3

Computer Graphics

Course outline

 Lighting
 Law of reflexion, Textures

 Colorimetry
 Color space
 Metamerism

 Graphic pipeline and OpenGL
 Primitives
 Discretization (Rasterization)
 Hidden faces

 Animations ?

4

Computer Graphics

Course outline

 Parametric surfaces
 Coons patches
 Tensor product surfaces
 (Bézier triangle)

 Non parametric surfaces
 Subdivision surfaces

5

Computer Graphics

Parametric Surfaces

6

Computer Graphics

Parametric Surfaces

 Coons patches
 Tensor-Product Surfaces
 Bézier Triangle

7

Computer Graphics

Coons patches

 Bilinear Coons patch
 Steven Anson Coons – (published in 1967 but came

from research done during WWII in aeronautics)
 Let 4 parametric curves (Bézier or B-Splines or other)

passing trough 4 points (A,B,C,D) :
P

1
(u)=P(u,0) , P

2
(u)=P(u,1) ,

Q
1
(v)=P(0,v) , Q

2
(v)=P(1,v) such as

P(0,0)=A P(1,0)=B
P(1,1)=C P(0,1)=D

 The surface P(u,v) is carried by
these 4 curves

D C

A B

P(1,v)
=Q

2

P(u,1)=P
2

P(u,0)=P
1

P(0,v)
=Q

1

P(u,v)

8

Computer Graphics

Bilinear Coons patches

 We define 3 surfaces by linear interpolation:

S 1(u , v)=(1−v)P (u ,0)+v P (u ,1)
S 2(u , v)=(1−u)P (0,v)+u P (1, v)
S 3(u , v)=(1−u)(1−v)P (0,0)+u(1−v)P (0,1)

+v (1−u)P (1,0)+uvP (1,1)

S 1u , v 

S 2u , v

S 3u ,v 

9

Computer Graphics

Bilinear Coons patches

 The Bilinear Coons patch is defined by :

 Why ?

S
1
 interpolates A,B,C,D

S
2
 too

S
1
+S

2
 can just interpolate A,B,C,D if we remove a term depending on

A,B,C,D and linear in u and v.

P (u , v)=S 1(u , v)+S 2(u , v)−S 3(u , v)

P (u , v)

10

Computer Graphics

Bilinear Coons patches

 Systematic notation

The surface may be expressed as :

 In this notation, F
1
(x)=1-x and F

2
(x)=x are blending

functions, and x is either u or v . They can be
replaced by whatever function to achieve e.g. a better
continuity (see later)

 In the matrix, the lower right 4-by-4 square
corresponds to surface S

3
; the upper line to S

1
 and left

column to S
2
.

P (u , v)=(1 F 1(u) F 2(u))⋅(
0 P (u ,0) P (u ,1)

P (0,v) −P (0,0) −P (0,1)
P (1,v) −P (1,0) −P (1,1))⋅(

1
F 1(v)
F 2(v)

)

11

Computer Graphics

Bilinear Coons patches

 Characteristics of a bilinear Coons patch
 Easy to build
 Based on any set of 4 boundary curves
 However, there is no precise control of the shape of

the surface “inside” the patch
e.g. it is impossible to impose a C1 continuity between two
neighbouring patches without constraints on the network of curves

12

Computer Graphics

Hermite blending

 It is however possible to carefully select F
1
 and F

2
 so

that they are C1 – continuous , like e.g. Hermite
polynomials :

 Then , as , the derivatives are

continuous over patch boundaries.

However, this is usually not sufficient : there are too
many constraints on the derivatives (they vanish) and
it yields a surface with flat areas around the edges.

P (u , v)=(1 F 1(u) F 2(u))⋅(
0 P (u ,0) P (u ,1)

P (0,v) −P (0,0) −P (0,1)
P (1,v) −P (1,0) −P (1,1))⋅(

1
F 1(v)
F 2(v)

)

F 1(x)=2 x3
−3 x2

+1 F 2(x)=−2 x3
+3 x2

∂ F 1(x)

∂ x |
x=0

=0

13

Computer Graphics

Hermite Blending

 Hermite interpolation

H is Hermite's matrix

C (u)=(A1 , A2 , A1
u , A2

u)(
2 −3 0 1
−2 3 0 0
1 −2 1 0
1 −1 0 0

)(
u3

u2

u
1
)

A1

A2

A2
u

A1
u

14

Computer Graphics

Hermite Blending

 Bicubic Hermite patch
 2D Hermite's interpolation
 4 positions at corners
 8 normal derivatives
 4 torsion vectors at corners

S(u,v)

S 3u , v =u3 , u2 , u , 1 HT 
A00 A01 A00

v A01
v

A10 A11 A10
v A11

v

A00
u A01

u A00
uv A01

uv

A10
u A11

u A10
uv A11

uvH 
v3

v2

v
1


15

Computer Graphics

Bicubic Coons patches

 Bicubic Coons patch
 One can build a surface that is based on any

boundary curves as for the bilinear patch
 8 curves are necessary : 4 positional curves + 4

“curves” depicting normal derivatives
 There are constraints between the derivative curve on

one side and the positional curve on an incident side.
 There are also constraints on the derivative

curves on each corner (cross derivatives
must be equal) S(u,v)

16

Computer Graphics

Bicubic Coons patches

 As for the bilinear case, we need information on
boundary curves : position + derivatives, and
corresponding info at the corners.

[D] [C]

[X] = [P(i,j) , P(i,j)
u
, P(i,j)

v
, P(i,j)

uv
] , (i,j)={0,1}2

[B]

P(u,v)

Pv (u ,0)

P (u ,0)

Pv (u ,1)

P(u ,1)

Pu
(1, v)

P(1,v)

Pu (0, v)

P(0, v)

[A]

17

Computer Graphics

Bicubic Coons patches

 Systematic notation for the bicubic Coons patch
 We have now :

P (u ,v)=(1 F 1(u) F 2(u) F 3(u) F 4(u))

⋅(
0 P (u ,0) P (u ,1) P v(u ,0) Pv (u ,1)

P (0, v) −P (0,0) −P (0,1) −P v(0,0) −Pv (0,1)
P (1, v) −P (1,0) −P (1,1) −P v (1,0) −Pv (1,1)
Pu (0, v) −Pu (0,0) −Pu(0,1) −Puv(0,0) −Puv (0,1)
Pu(1, v) −Pu(1,0) −Pu(1,1) −Puv(1,0) −Puv (1,1)

)⋅(
1

F 1(v)
F 2(v)
F 3(v)
F 4(v)

)

18

Computer Graphics

Bicubic Coons patches

… with andH*
=(

1 ⋯0⋯
⋮
0 H
⋮

)

=(1 u3 u2 u 1)⋅(H*
)

T

⋅(
0 P (u ,0) P (u ,1) P v(u ,0) Pv (u ,1)

P (0,v) −P (0,0) −P (0,1) −P v(0,0) −Pv (0,1)
P (1,v) −P (1,0) −P (1,1) −P v (1,0) −Pv (1,1)
P u(0, v) −Pu (0,0) −Pu(0,1) −Puv(0,0) −Puv (0,1)
Pu(1, v) −Pu(1,0) −Pu(1,1) −Puv(1,0) −Puv (1,1)

)⋅H*
⋅(

1
v3

v2

v
1
)

H=(
2 −3 0 1
−2 3 0 0
1 −2 1 0
1 −1 0 0

)

19

Computer Graphics

Bicubic Coons patches

 As for bilinear patches, it can be decomposed
into three surfaces

S 1(u ,v)=(P (u ,0) , P (u ,1) , P v(u ,0) , Pv (u ,1))H(
v3

v2

v
1
)

S 2(u , v)=(P (0, v) , P (1,v) , Pu(0, v) , Pu(1,v))H(
u3

u2

u
1
)

S 1u , v 

S 2u , v

20

Computer Graphics

Bicubic Coons patches

S 3(u , v)=(u3 , u2 , u ,1)⋅HT

⋅(
P (0,0) P (0,1) P v(0,0) P v (0,1)
P (1,0) P (1,1) Pv (1,0) P v (1,1)
Pu(0,0) Pu (0,1) Puv(0,0) Puv(0,1)
Pu(1,0) Pu(1,1) Puv(1,0) Puv(1,1)

)⋅H⋅(
v3

v2

v
1
)

P (u , v)=S 1(u , v)+S 2(u , v)−S 3(u , v)

21

Computer Graphics

Bicubic Coons patches

 Bicubic Coons patch

The terms of the matrix are computed with the help of
border curves and verify the following conditions :

P (u , v)=S 1(u , v)+S 2(u , v)−S 3(u , v)

S 3(u , v)=(u3 , u2 , u ,1)HT (
A00 A01 A00

v A01
v

A10 A11 A10
v A11

v

A00
u A01

u A00
uv A01

uv

A10
u A11

u A10
uv A11

uv)H (
v3

v2

v
1
)

A00=P(0,0) A01=P (0,1) A00
v
=Pv (0,0) A01

v
=P v (0,1)

A10=P(1,0) A11=P(1,1) A10
v
=Pv (1,0) A11

v
=Pv (1,1)

A00
u
=P u(0,0) A01

u
=P u(0,1) A00

uv
=P uv(0,0) A01

uv
=Puv (0,1)

A10
u
=P u(1,0) A11

u
=P u(1,1) A10

uv
=Puv(1,0) A11

uv
=P uv(1,1)

22

Computer Graphics

Bicubic Ferguson patch

 Ferguson patch

The terms of the matrix are computed with the help of
border curves and verify the following conditions :

P (u , v)=S 1(u , v)+S 2(u , v)−S 3(u , v)

S 3u , v=u3 , u2 , u ,1 HT 
A00 A01 A00

v A01
v

A10 A11 A10
v A11

v

A00
u A01

u A00
uv A01

uv

A10
u A11

u A10
uv A11

uvH
v3

v2

v
1


A00=P(0,0) A01=P (0,1) A00
v
=P v (0,0) A01

v
=P v (0,1)

A10=P(1,0) A11=P(1,1) A10
v
=P v (1,0) A11

v
=P v (1,1)

A00
u
=P u(0,0) A01

u
=P u(0,1) A00

uv such that
∂

2 P
∂u∂ v

(0,0)=0 A01
uv such that

∂
2 P

∂u∂v
(0,1)=0

A10
u
=P u(1,0) A11

u
=P u(1,1) A10

uv such that
∂

2 P
∂u∂ v

(1,0)=0 A11
uv such that

∂
2 P

∂u∂v
(1,1)=0

23

Computer Graphics

Bicubic Coons patches

 We can impose the position and the normal tangent
along the boundaries

 Remain the problem of the continuity at every corner
 We usually impose that cross derivatives vanish → Ferguson patch
 Other constraints may be found in the literature...

24

Computer Graphics

Tensor product surfaces

 Parametric surfaces as a polar form

 One shape function per control point

 « Tensor product » surface if N
k
 is separable :

 Combination of elementary curves/shape functions
independently defined on u and v.

Usually built upon Bézier and B-Splines curves/SFs
 The “unique” shape function is

S u , v=∑
i
∑

j

G i uH j v Pij

S (u , v)=∑
k

N k (u , v)Pk

N k (u , v)=G i (u)H j (v)

25

Computer Graphics

B-Spline surfaces

 B-Splines surfaces uses 1D B-Spline shape fns.
 Definition as tensor product :

 Every variable u and v has a degree (p and q) and a
nodal sequence U and V :

 The control points forms a regular net P
ij
 (n+1 times

m+1) values.
 We have the following relations :

S u , v=∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v Pij

U={0,⋯ , 0⏟
p+ 1

, u p+ 1 ,⋯ , ur− p−1 ,1,⋯ ,1⏟
p+ 1

} (r+ 1 nodes)

V={0,⋯ , 0⏟
q+ 1

, vq+ 1 ,⋯ , v s−q−1 , 1,⋯ ,1⏟
q+ 1

} (s+ 1 nodes)

r=n+ p+ 1 s=m+ q+ 1

26

Computer Graphics

B-Spline surfaces

U={0 ,0 ,0 ,0 ,1 /4 ,1/2 , 3/4 ,1 ,1 ,1 ,1} p=3

V={0 ,0 ,0 ,1/5 ,2 /5 ,3/5 ,3/5 ,4 /5,1 ,1 ,1} q=2

L
. P

ie
gl

 «
 T

he
 N

U
R

B
S

 B
oo

k
»

N 4
2
v 

N 4
3
u

N 2
2
v 

N 4
3
u

N 4
3
(u)N 2

2
(v)

Basis function associated to P 42

N 4
3
(u)N 4

2
(v)

Basis function associated to P44

 Example of basis functions

27

Computer Graphics

B-Spline surfaces

 Properties of surface basis functions
 Extrema

If p>0 and q>0, has a unique maximum.
 Continuity

Inside rectangles formed by the nodes u
i
 and v

j
, the

SF are infinitely differentiable.
At a node u

i
 (resp. v

j
), is (p-k) (resp. (q-k))

times differentiable, k being the node multiplicity u
i

(resp. v
j
)

The continuity with respect to u (resp. v) depends
solely on the nodal sequence U (resp. V).

N i
p
uN j

q
v 

N i
p
uN j

q
v 

28

Computer Graphics

B-Spline surfaces

 Properties of surface basis functions
 A consequence of properties of the 1D shape functions
 Non-negativity

 Partition of unity

 Compact support

There are at most (p+1)(q+1) non zero SF in a given
interval .
In particular

N i
p
uN j

q
v ≥0∀ i , j , p , q , u , v

∑
i=0

n

∑
j=0

m

N i
p
uN j

q
v =1∀u , v ∈[umin , umax]×[vmin , vmax]

N i
p
(u)N j

q
(v)=0 outside (u ,v)∈[ui , ui+ p+ 1 [×[v j , v j+ q+ 1[

[ui0
, ui01 [×[v j 0

, v j01[
N i

p
uN j

q
v ≠0 i0− p≤i≤i0 j0−q≤ j≤ j0

29

Computer Graphics

B-Spline surfaces

 Properties of surface basis functions
 Extrema

If p>0 and q>0, has a unique maximum.
 Continuity

Inside rectangles formed by the nodes u
i
 and v

j
, the

SF are infinitely differentiable.
At a node u

i
 (resp. v

j
), is (p-k) (resp. (q-k))

times differentiable, k being the node multiplicity u
i

(resp. v
j
)

The continuity with respect to u (resp. v) depends
solely on the nodal sequence U (resp. V).

N i
p
uN j

q
v 

N i
p
uN j

q
v 

30

Computer Graphics

B-Spline surfaces

U={0 ,0 , 0 ,0 ,1 ,2 , 2 , 2 , 2} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

U={0 , 0 ,0 ,0 ,1 , 2 , 3 , 4 ,5 ,6 ,6 ,6 ,6}
V={0 , 0 , 0 ,1 , 2 , 3 ,4 ,5 ,6 ,7 , 7 , 7}

N 2
3
uN 2

2
v 

N 4
3
uN 4

2
v 

31

Computer Graphics

B-Spline surfaces

U={0 , 0 , 0 ,0 ,1 ,2 , 3 , 4 ,5 ,6 ,6 ,6 ,6} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,4 ,5 ,6 , 7 , 7 ,7} q=2

N 0
3
uN 8

2
v 

N 0
3
(u)N 0

2
(v)

N 8
3
uN 0

2
v 

N 8
3
uN 8

2
v 

N 1
3
uN 7

2
v 

N 1
3
(u)N 1

2
(v)

N 7
3
uN 1

2
v 

N 7
3
uN 7

2
v 

32

Computer Graphics

B-Spline surfaces

 Computation of a point on the surface

1 – Find the nodal interval in which u is located

2 – Compute the non vanishing 1D shape functions

3 – Find the nodal interval in which v is located

4 – Compute the non vanishing 1D shape functions

5 – Multiply the SFs with the adequate control points

u∈[ui , ui1 [

N i− p
p
u ,⋯, N i

p
u

v∈[v j , v j+1 [

N j−q
q

v  ,⋯ , N j
q
v

S u , v=∑
k
∑

l

N k
p
uPkl N l

q
v  i− p≤k≤i , j−q≤l≤ j

33

Computer Graphics

B-Spline surfaces

 Each coloured square has an independent polynomial
expression

Control point

Corresponding position
at a couple (u

i
,v

j
)

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 , 3 ,3} q=3

V={0 ,0 ,0 ,1 , 2 ,3 ,3 , 3} p=2

34

Computer Graphics

B-Spline surfaces

U={0 ,0 ,0 ,0 ,1 ,2 ,2 , 2 ,2} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

35

Computer Graphics

B-Spline surfaces

 Repetitions in the nodal sequence U or V
 Discontinuities along iso-v or iso-u

U={0 ,0 ,0 ,0 ,2 , 2 ,2 ,4 ,4 , 4 ,4} p=3
V={0 ,0 ,0 ,1.5 ,1.5 ,3 ,3 ,3} q=2

36

Computer Graphics

B-Spline surfaces

 Properties of the B-Spline surface
 Interpolate the 4 corners if the nodal sequences are of

the form

 If the nodal sequences correspond to Bézier curves :

then the surface is called a Bézier patch.

U={0,⋯ , 0
p1

, u p1 ,⋯ , ur− p−1 ,1,⋯ ,1
p1

}

V={0,⋯ ,0
q1

, vq1 ,⋯ , v s−q−1 ,1,⋯ ,1
q1

}

U={0,⋯ , 0
p1

,1,⋯ ,1
p1

} V={0,⋯ ,0
q1

,1,⋯ ,1
q1

}

37

Computer Graphics

B-Spline surfaces

 Properties of the B-Spline surface
 The surface has the property of affine invariance

(invariance by translation in particular)
 The convex hull of the control points contains the

surface.
 In every interval

, the portion of the surface is in the convex hull of the
control points

 Control points may have a local control
 There is no variation diminishing property (on the

contrary to B-Spline/Bézier curves)

(u , v)∈[ui0
, ui 0+1 [×[v j 0

, v j 0+1 [

P ij , (i , j) such that i0− p≤i≤i0 j0−q≤ j≤ j0

38

Computer Graphics

B-Spline surfaces

 Isoparametrics
 Computation of isoparametrics is easy :

Set u=u
0

 same with v=v
0

Cu0
v=S u0, v=∑

i=0

n

∑
j=0

m

N i
p
u0N j

q
v Pij

=∑
j=0

m

N j
q
v∑

i=0

n

N i
p
u0Pij=∑

j=0

m

N j
q
vQ j u0

with Q j (u0)=∑
i=0

n

N i
p
(u0)Pij

C v0
(u)=S (u , v0)=∑

i=0

n

N i
p
(u)Qi (v0)

with Q i(v0)=∑
j=0

m

N j
q
(v0)Pij

39

Computer Graphics

B-Spline surfaces

 Derivatives of a B-Spline surface
 We want to compute

 Differentiation of basis functions :

∂
kl

∂uk
∂ v l S u , v=∑

i=0

n

∑
j=0

m
∂

kl

∂ uk
∂ v l N i

p
uN j

q
v Pij

∂
kl

∂uk
∂ v l

S u , v

=∑
i=0

n

∑
j=0

m
∂

k

∂uk N i
p
u 

∂
l

∂ v l N j
q
v Pij

=∑
i=0

n

∑
j=0

m

N i
p k 

uN j
q l 
vP ij

40

Computer Graphics

B-Spline surfaces

 Derivatives expressed as B-Spline surfaces
 Let's derive formally S with respect to u:

 We want to apply equations seen for curves :

∂ S (u , v)
∂u

=∑
j=0

m

N j
q
(v)(∂∂u∑i=0

n

N i
p
(u)P ij)

=∑
j=0

m

N j
q
(v)(

∂
∂ u

C j(u))

with C j(u)=∑
i=0

n

N i
p
(u)P ij

41

Computer Graphics

B-Spline surfaces

 Derivatives of the curve

U={u0 ,⋯, u p⏟
p+ 1 times

,⋯, um− p ,⋯, um⏟
p+ 1 times

}

Qi= p
P i1 j−Pij

uid1−ui1

P '
(u)=∑

i=0

n−1

N i
p−1
(u)Qi with N i

p−1 defined on U '

C j u =∑
i=0

n

N i
p
u Pij

U '
={u0

' ,⋯, u p−1
'

⏟
p times

,⋯, um− p−1
' ,⋯, um−2

'

⏟
p times

} with ui
'
=ui+ 1

42

Computer Graphics

B-Spline surfaces

 We obtain :

∂ S u , v
∂u

=∑
i=0

n−1

∑
j=0

m

N i
p−1

uN j
q
vP ij

1,0

with Pij
(1,0)

= p
Pi+ 1 j−P ij

ui+ p+ 1−ui+ 1

U={u0 ,⋯, u p⏟
p+ 1 times

,⋯, um− p ,⋯, um⏟
p+ 1 times

}

U (1)
={u0

(1) ,⋯ , u p−1
(1)

⏟
p times

,⋯, um− p−1
(1) ,⋯, um−2

(1)

⏟
p times

} with ui
(1)
=ui+ 1 ,0≤i≤m−2

43

Computer Graphics

B-Spline surfaces

 Let's derive formally S with respect to v:

∂ S u , v
∂ v

=∑
i=0

n

∑
j=0

m−1

N i
p
uN j

q−1
v P ij

0,1

with Pij
(0,1)

=q
P i j+ 1−P ij

v j+ q+ 1−v j+ 1

V={v0 ,⋯, vq⏟
q+ 1 times

,⋯, vn−q ,⋯, vn⏟
q+ 1 times

}

V (1)
={v0

(1) ,⋯, vq−1
(1)

⏟
q times

,⋯, vn−q−1
(1) ,⋯, vn−2

(1)

⏟
q times

} with v j
(1)
=v j+ 1 ,0≤ j≤n−2

44

Computer Graphics

B-Spline surfaces

 Let's derive formally S with respect to u , then v:

∂
2 S u , v 
∂u∂ v

=∑
i=0

n−1

∑
j=0

m−1

N i
p−1

u N j
q−1
vP ij

1,1

with Pij
(1,1)
=q

P i j+ 1
(1,0)

−P ij
(1,0)

v j+ q+ 1−v j+ 1

V (1)
={v0

(1) ,⋯ , vq−1
(1)

⏟
q times

,⋯, vn−q−1
(1) ,⋯ , vn−2

(1)

⏟
q times

} with v j
(1)
=v j+ 1 , 0≤ j≤n−2

U (1)
={u0

(1) ,⋯ , u p−1
(1)

⏟
p times

,⋯, um− p−1
(1) ,⋯, um−2

(1)

⏟
p times

} with ui
(1)
=ui+ 1 ,0≤i≤m−2

45

Computer Graphics

B-Spline surfaces

 General case :

 The derivative vector of a B-Spline surface also is a B-
Spline surface...

∂
kl S u , v 

∂uk
∂v l =∑

i=0

n−k

∑
j=0

m−l

N i
p−k

uN j
q−l
vP ij

k , l 

with Pij
(k , l)

=(q−l+ 1)
P i j+ 1
(k ,l−1)

−Pij
(k , l−1)

v j+ q+ 1−v j+ l

V (l)
={v0

(l) ,⋯ , vq−l
(l)

⏟
q+ 1−l times

,⋯, vn−q−l
(l) ,⋯, vn−2l

(l)

⏟
q+ 1−l times

} with v j
(l)
=v j+ l , 0≤ j≤n−2 l

U (k)
={u0

(k) ,⋯ , u p−k
(k)

⏟
p+ 1−k times

,⋯ , um− p−k
(k) ,⋯, um−2k

(k)

⏟
p+ 1−k times

} with ui
(k)
=ui+ k ,0≤i≤m−2 k

46

Computer Graphics

B-Spline surfaces

 Periodic surfaces
 Like for the curves, possibility to “close” a B-Spline

surface by transforming the nodal sequence
 According to one parameter (u or v)

Cylindrical surfaces
 A single periodic nodal sequence
 Control points on both sides of the seam are doubled

 According to both parameters (u and v)
Toroidal surfaces

 Two periodic nodal sequences
 Some control points are repeated 4 times !

47

Computer Graphics

B-Spline surfaces

u
v

Pipe

u
v

Moëbius's ribbon

48

Computer Graphics

B-Spline surfaces

U={−3 ,−2 ,−1 ,0 ,1 , 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,7 , 7} p=2

49

Computer Graphics

B-Spline surfaces

U={−3 ,−2 ,−1 ,0 ,1 , 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,7 , 7} p=2

50

Computer Graphics

B-Spline surfaces

u
v

Tore

u
v

Twisted Tore...

51

Computer Graphics

B-Spline surfaces

52

Computer Graphics

B-Spline surfaces

53

Computer Graphics

B-Spline surfaces

U={−3 ,−2 ,−1 ,0 ,1 , 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15} p=3
V={−2 ,−1 , 0 ,1 ,2 ,3 ,4 ,5 , 6 ,7 , 8 ,9} p=2

54

Computer Graphics

B-Spline surfaces

u
v

Klein's bottle

55

Computer Graphics

B-Spline surfaces

 Some manipulations
 Insertion of nodes

 Extraction of iso-parametrics
 Calculation of the position of a point on the surface
 Subdivision of the surface
 Transformation into Bézier patches

56

Computer Graphics

B-Spline surfaces

 Insertion of nodes
 We insert nodes In a nodal sequence (U ou V)
 The new nodal sequence replace the old one
 The control points are modified

 If U is modified, every series of control points corresponding to v=cst is
independently modified

 If V is modified, every series of control points corresponding to u=cst is
independently modified

 We use Boehm's algorithm as for curves

u

v

U={0 , 0 , 0 , 0 ,1 , 2 ,3 ,3 ,3 , 3} p=3

V={0 ,0 ,0 ,1 , 2 ,3 ,3 , 3} p=2

57

Computer Graphics

B-Spline surfaces

 Insertion of nodes in u

U={0 ,0 ,0 ,0 ,0.4 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 , 3 , 3} q=2

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

58

Computer Graphics

B-Spline surfaces

 Insertion of nodes in v

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,0.4 ,1 ,2 ,3 ,3 ,3} q=2

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

59

Computer Graphics

B-Spline surfaces

 Extraction of iso-parametrics using node insertion
 We must saturate one node in u=u

iso
 (resp. in v=v

iso
).

 The new control points obtained by Boehm's algorithm do form the
control polygon of the iso-parametric curve.

 The nodal sequence of this curve is V (resp. U).

60

Computer Graphics

B-Spline surfaces

u
iso

=0.4

V={0 ,0 ,0 ,1 ,2 ,3 , 3 , 3} q=2

 Extraction of an isoparametric in u

U={0 , 0 , 0 ,0 ,0.4 ,0.4 ,0.4 ,1 , 2 , 3 ,3 ,3 ,3} p=3U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

61

Computer Graphics

B-Spline surfaces

v
iso

=0.4

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3

 Extraction of an isoparametric in v

V={0 ,0 ,0 ,0.4 ,0.4 ,1 ,2 ,3 ,3 , 3} q=2
U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

62

Computer Graphics

B-Spline surfaces

 Computation of the position of a point on the surface

v=0.4u=0.4

V={0 ,0 ,0 ,0.4 ,0.4 ,1 ,2 ,3 ,3 , 3} q=2
U={0 ,0 ,0 ,0 ,0.4 ,0.4 ,0.4 ,1 ,2 ,3 ,3 ,3 ,3} p=3U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3

V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

63

Computer Graphics

 Subdivision of the surface into independent patches

V={0 ,0 ,0 ,0.4 ,0.4 ,0.4} q=2
U={0.4 ,0.4 ,0.4 ,0.4 ,1 ,2 ,3 ,3 ,3 ,3} p=3

V={0.4 ,0.4 ,0.4 ,1 ,2 ,3 ,3 ,3} p=2
U={0.4 ,0.4 ,0.4 ,0.4 ,1 ,2 ,3 ,3 ,3 ,3} p=3

V={0 ,0 ,0 ,0.4 ,0.4 ,0.4} p=2
U={0 ,0 ,0 ,0 ,0.4 ,0.4 ,0.4 ,0.4} p=3

B-Spline surfaces

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

64

Computer Graphics

B-Spline surfaces

 Subdivision into Bézier patches
... one must saturate every node of each nodal sequence U and V

U={0 ,0 ,0 ,0 ,1 ,2 ,3 ,3 ,3 ,3} p=3
V={0 ,0 ,0 ,1 ,2 ,3 ,3 ,3} q=2

U={0 , 0 ,0 ,0 ,1 , 1 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 3} p=3
V={0 ,0 ,0 ,1 ,1 ,2 , 2 ,3 , 3 ,3} q=2

65

Computer Graphics

B-Spline surfaces

 Continuity requirements for surfaces
 C1 vs C2 – becomes visible when light interaction

comes into play

66

Computer Graphics

Bézier triangle

67

Computer Graphics

Bézier triangle

 Need for specific topology
 Box corner aka « coin de valise » (in French)

S. Hahmann

68

Computer Graphics

Bézier triangle

 There are several techniques to model the corner
 It's more difficult than one thinks ...
 On may take a regular patch with 4 sides and « limit » it by a triangle

in the parametric space
 Problem : The surface in question is not built with the control points of

the other surfaces, so any continuity is difficult to enforce (minimization
of a non linear functional)

u

v

69

Computer Graphics

Bézier triangle

 Degenerated quadrangular patch
 Normals and derivatives are undefined at the singular point

70

Computer Graphics

Bézier triangle

71

Computer Graphics

Bézier triangle

 Triangular B-splines
 1992 : works of Dahmen, Micchelli et Seidel

W. Dahmen, C.A. Micchelli and H.P. Seidel, Blossoming begets B-
Splines built better by B-patches, Mathematics of Computation, 59
(199), pp. 97-115, 1992

 Extension of the definition of B-Splines on triangular surfaces of any
topology

 Network of control points
 « Mesh » of non structured topology instead of a structured network as

for B-splines surfaces
 Complex and not usually not implemented in current CAD software,

therefore not a “standard” tool.

72

Computer Graphics

Bézier triangle

 Triangular Bézier Surfaces
 Example : surface of order 3

73

Computer Graphics

Bézier triangle

 Barycentric coordinates




 Affine invariance




p

a

cb

p=u⋅av⋅bw⋅c

uvw=1

0≤u , v , w≤1⇔ p is in the triangle

u=
area (p , b , c)
area (a ,b , c)

v=
area (p , c ,a)
area (a ,b ,c)

w=
area (p ,a , b)
area (a ,b , c)

74

Computer Graphics

Bézier triangle

 Barycentric coordinates

p

a

cb

v

u

w

vuw

v

u
w

75

Computer Graphics

 Decomposition of the Bézier triangle
 Defined by the control points P

i,j,k

 Degree d : i+j+k=d
 Example with d=3

 Overall, control points.

Bézier triangle

P
0,3,0

P
0,2,1

P
1,2,0

P
0,1,2

P
1,1,1

P
2,1,0

P
0,0,3

P
1,0,2

P
2,0,1

P
3,0,0

P
0,3,0

P
0,0,3

P
3,0,0

P
1,2,0

d2d1
2

76

Computer Graphics

Bézier triangle

 De Casteljau's algorithm on the Bézier triangle
 The P

i,j,k
 are given

 We want to compute P(u,v,w) with u+v+w=1
 We follow the next algorithm :

initialize

for r from 1 to d and for every triplet (i,j,k) s.t. i+j+k=d-r

The point on the surface is the last point :

P i , j , k
r

u , v , w=u P i1, j , k
r−1

⋯v P i , j1, k
r−1

⋯w Pi , j , k1
r−1

⋯

P u , v , w=P0,0 ,0
d

u , v , w

P i , j , k
0

u , v , w=P i , j , k

77

Computer Graphics

Bézier triangle

 De Casteljau's algorithm on the Bézier triangle

P0,0 ,0
d

u , v , w

78

Computer Graphics

Bézier triangle

 Characteristics of the Bézier triangle
 Affine invariance
 Contained in the convex hull of the control points
 Interpolation of extremal vertices
 Edges of the Bézier triangle are in fact Bézier curves
 Algebraic form : another form of Bernstein polynomials

with (recurrence)

P u , v , w= ∑
i jk=d

Bi , j , k
d

u ,v ,w P i , j , k

Bi , j , k
d

u , v , w=
d !

i ! j ! k !
ui v j w k

Bi , j , k
d

u , v , w=uBi−1, j , k
d−1

⋯vBi , j−1, k
d−1

⋯wBi , j , k−1
d−1

⋯

B0,0 ,0
0

u , v ,w =1

79

Computer Graphics

Bézier triangle

 Characteristics (following)
 On the contrary to tensor product surfaces, the Bézier

triangle is variation diminishing.

80

Computer Graphics

Bézier triangle

 Degree elevation
 The P

i,j,k
 are given, we search the P'

 i,j,k
 corresponding

to the same surface of degree d+1
 Forrest's relations for the Bézier triangle

P i , j , k
'

=
1

d1
i P i−1, j , k j P i , j−1, kk P i , j , k−1 

P u , v , w= ∑
i jk=d1

Bi , j , k
d1

u , v , wP i , j , k
'

= ∑
i jk=d

Bi , j , k
d

u , v , wP i , j , k

81

Computer Graphics

Bézier triangle

 Subdivision

82

Computer Graphics

Bézier triangle

 Derivatives
 For tensor product surfaces, partial derivatives are

computed along u=const or v=const
 Here, we express directional derivatives for u=const;

v=const or w=const. - these are not partial derivatives !

Du P u , v ,w =lim
t0

P u , vtdv , wtdw−P u , v ,w 
t

83

Computer Graphics

Bézier triangle

 Case of a surfaces of degree 3

P
0,3,0

P
0,2,1

P
1,2,0

P
0,1,2

P
1,1,1

P
2,1,0

P
0,0,3

P
1,0,2

P
2,0,1

P
3,0,0

P 0,1,0=P0,3 ,0

Du P u , v ,w 0,1,0=3P0,2 ,1−P0,3 ,0

Dv P u , v , w0,1 ,0=3P1,2 ,0−P0,2 ,1

Dw (P (u , v , w))(0,1,0)=3(P1,2,0−P0,3 ,0)

DuuP u , v , w0,1,0 =6P0,1 ,2−2P0,2 ,1P0,3 ,0

Dvv P u , v ,w 0,1,0=6 P2,1,0−2P1,1 ,1P0,1,2

Dww P u , v , w0,1 ,0=6P 2,1 ,0−2P1,2 ,0P0,3 ,0

Duv P u , v ,w 0,1,0=6P1,1 ,1P0,2 ,1−P0,1 ,2−P1,2 ,0

Duw P u , v ,w 0,1,0=6 P1,1 ,1P0,3 ,0−P0,2 ,1−P1,2 ,0

Dvw P u , v ,w 0,1,0=6P2,1 ,0P0,2 ,1−P1,2 ,0−P1,1 ,1

Same at
other corners

84

Computer Graphics

Subdivision surfaces

85

Computer Graphics

Subdivision surfaces

 Parametric surfaces: an explicit representation
 Lightweight
 Discretization algorithms are non trivial... but it is

necessary for display purposes and in computer
graphics

 Generally, these surfaces are used in cases where the
geometric accuracy is essential, as in the computation
of intersections and other precise geometric
primitives

 Modelling operators are non trivial
 In computer graphics, such accuracy is generally not

needed.

86

Computer Graphics

Subdivision surfaces

 Subdivision surfaces
 Modelling basis = elementary mesh
 By successive iterations, this mesh is refined up to the

accuracy needed for the application
 It is more like an algorithmic description vs. an

algebraic representation, because the algorithm that is
used to subdivide the mesh determines the final
shape and the properties of the limiting surface (ie.
when the number of subdivisions tends to the infinite)

 Some of these limiting surfaces are equivalent to
“regular” parametric surfaces, therefore have the
same “accuracy”.

87

Computer Graphics

Subdivision surfaces

 History
 1974 – George Chaikin

An algorithm for high speed curve generation

 1978 – Daniel Doo & Malcolm Sabin
(D) A subdivision algorithm for smoothing irregularly shaped polyhedrons
(D&S) Behaviour of recursive division surfaces near extraordinary points.

 1978 – Edwin Catmull & Jim Clark
Recursively generated B-Spline surfaces on arbitrary topological meshes

 1987 – Charles Loop
Smooth subdivision surfaces based on triangles

 2000 – Leif Kobbelt
√3 – subdivision (interpolating scheme)

88

Computer Graphics

Subdivision surfaces

 Chaikin's scheme

George Chaikin, An algorithm for high speed curve generation, Computer graphics and Image
Processing 3 (1974) , 346-349

89

Computer Graphics

Subdivision surfaces

 Chaikin's scheme
or « Corner-cutting »

90

Computer Graphics

Subdivision surfaces

 Chaikin's scheme

Chaikin's idea was simple : repeating the corner cutting, to the limit,
one obtains a smooth curve

91

Computer Graphics

Subdivision surfaces

 Chaikin's scheme
 Starting from a polygon having n vertices {P

0
,P

1
, … P

n-1
} , one builds

the polygon having 2n vertices {Q
0
,R

0
,Q

1
,R

1
, … Q

n-1
,R

n-1
}. This polygon

serves as a basis for the next step of the algorithm : {P'
0
,P'

1
, … P'

2n-1
}

 The new vertices are :

P
0

P
1

P
n-1

P
n

Q
0

R
0

Q
1

R
1

Qi=
3
4

P i
1
4

P i1

Ri=
1
4

P i
3
4

P i1

Q
n-1

R
n-1

92

Computer Graphics

Subdivision surfaces

 Chaikin's scheme
 Riesenfeld (1978) has shown that this algorithm leads at the limit to

an uniform quadratic B-spline, which exhibits a C1 continuity.

P
0

P
1

P
n-1

P
n

Q
0

R
0

Q
1

R
1

Qi=
3
4

P i
1
4

P i1

Ri=
1
4

P i
3
4

P i1

Q
n-1

R
n-1

93

Computer Graphics

Subdivision surfaces

 Demonstration of the equivalence of Chaikin's scheme
and uniform quadratic B-Splines

 The B-Spline curve is defined

by :

U={u0 ,⋯ , un2} , ui1−ui=1 , i=0⋯n1

P u=∑
i=0

n

P i N i
2
u

N i
2
u=

u−ui

ui2−ui

N i
1
u

ui3−u

ui3−ui1

N i1
1
u

N i
1
u=

u−ui

ui1−ui

N i
0
u

ui2−u

ui2−ui1

N i1
0
u

N i
0
(u)={1 if ui≤u<ui+1

0 otherwise

94

Computer Graphics

Subdivision surfaces

 It can be rewritten as a “monomial” form :

with

 The matrix M
k
 depends on the nodal sequence U.

P u=∑
i=0

n

P i N i
2
u=∑

k=0

n−2

P k u

Pk u=[1 u u2
]⋅M k⋅[

Pk

P k1

P k2
]

« Portion » of curve

P
0

P
1

P
2

P
3

P
4

P
0
(u)

P
1
(u)

P
2
(u)

95

Computer Graphics

Subdivision surfaces

 Computation of shape functions of degree for u
2
= 0 ≤ u ≤ u

3
=1

U={u0=−2, u1=−1, u2=0,u3=1,u4=2, u5=3}

N 0
0
=0

N 1
0
=0

N 2
0
=1

N 3
0
=0

N 4
0
=0

d≤2

N 0
1
=0

N 1
1
=1−u

N 2
1
=u

N 3
1
=0

N 0
2
=

1
2
1−2 uu2



N 1
2
=

1
2
12 u−2 u2



N 2
2
=

1
2
u2



M 0=
1
2 [

1 1 0
−2 2 0
1 −2 1]Therefore,

M k=
1

uk3−uk2 [
uk3

2


−

uk3 uk1


−

u k4 uk2



u k2
2



−2
uk3



uk3u k1




uk4u k2


−2

uk2



1


1



1


1


]=u k3−uk1

=u k4−u k2

General case :

with :

96

Computer Graphics

Subdivision surfaces

 Binary subdivision of a B-Spline curve for 0 ≤ u ≤ 1
 One has to find the new set of control points for each half of the

curve
 We set n=2 (number of control points)

 One wants to express and
- on each subdivision, the
parameter u shall be in between
0 and 1.

P u=[1 u u2
]⋅M⋅[

P 0

P1

P 2
] M=

1
2 [

1 1 0
−2 2 0
1 −2 1]

P[0,1 /2]u P[1 /2,1]u

P
0

P
1

P
2

P[1 /2,1]uP[0,1 /2]u

97

Computer Graphics

Subdivision surfaces

 Case of P[0,1 /2]u

P[0,1 /2]u=P u /2=[1 u /2 u2
/4]⋅M⋅[

P0

P1

P2
]

=[1 u u2
]⋅[

1 0 0
0 1/2 0
0 0 1/4]⋅M⋅[

P0

P1

P 2
]

=[1 u u2
]⋅M⋅M−1

⋅[
1 0 0
0 1 /2 0
0 0 1 /4]⋅M⋅[

P0

P1

P2
]

=[1 u u2
]⋅M⋅[

Q0

Q1

Q2
] avec [

Q0

Q1

Q2
]=M−1

⋅[
1 0 0
0 1 /2 0
0 0 1 /4]⋅M


S
[0,1 /2]

⋅[
P0

P1

P2
]

98

Computer Graphics

Subdivision surfaces

 Case of

P[1 /2,1]u=P 1u/2=[1 1u/2 1u2/4]⋅M⋅[
P0

P1

P2
]

=[1 u u2
]⋅[

1 1/2 1/4
0 1/2 1/2
0 0 1/4]⋅M⋅[

P0

P1

P 2
]

=[1 u u2
]⋅M⋅M −1

⋅[
1 1 /2 1/4
0 1 /2 1/2
0 0 1/4]⋅M⋅[

P 0

P 1

P 2
]

=[1 u u2
]⋅M⋅[

R0

R1

R2
] avec [

R0

R1

R2
]=M −1

⋅[
1 1 /2 1 /4
0 1 /2 1 /2
0 0 1 /4]⋅M


S
[1/ 2,1]

⋅[
P0

P1

P2
]

P[1 /2,1]u

99

Computer Graphics

Subdivision surfaces

 Finally,

[
Q0

Q1

Q2
]=S[0,1/2]⋅[

P0

P1

P2
]

[
R0

R1

R2
]=S [1/2,1]⋅[

P0

P1

P2
] S [1/2,1]=M−1

⋅[
1 1/2 1 /4
0 1/2 1 /2
0 0 1 /4]⋅M=

1
4 [

1 3 0
0 3 1
0 1 3]

S [0,1/2]=M −1
⋅[

1 0 0
0 1 /2 0
0 0 1 /4]⋅M=

1
4 [

3 1 0
1 3 0
0 3 1] [

Q0

Q1

Q2
]=1

4 [
3 P0P1

P03 P1

3 P1P 2
]

[
R0

R1

R2
]= 1

4 [
P 03 P1

3 P1P2

P13 P2
]

P
0

P
1

P
2

Q
0

Q
1
= R

0
Q

2
= R

1

R
2

P[1 /2,1]uP[0,1 /2]u

One finds the same
coefficients as in
Chaikin's scheme...
(except for the indices)

Qi=
3
4

P i
1
4

P i1

Ri=
1
4

P i
3
4

P i1

100

Computer Graphics

Subdivision surfaces

 This can be extended to cubic B-Splines
 C2 continuity

P
0

P
1

P
n-1

P
n

E
0

V
0 E

1

V
1

E i=
1
2

P i
1
2

P i1

V i=
1
8

P i
3
4

P i1
1
8

P i2

E
n-1

101

Computer Graphics

Subdivision surfaces

 Doo-Sabin scheme
 This is an extension of Chaikin's scheme for a uniform biquadratic B-

Spline surface
 The new mesh is built using the control points resulting from the

subdivision of the original patch into 4 new sub-patches.

P
00

P
02

P
22

P
20

S
1
(u,v)

S
2
(u,v)

S
3
(u,v)

S
4
(u,v)

102

Computer Graphics

Subdivision surfaces

 Expression of the bi-quadratic patch as a monomial form for 0 ≤ u ≤
1 and 0 ≤ v ≤ 1:

P
00

P
02

P
22

P
20

S u , v =∑
i=0

2

∑
j=0

2

N i
2
uN j

2
v P ij

U=V={−2,−1,0 ,1 ,2,3}

S u ,v =[1 u u2
]⋅M⋅[

P0v 
P1v
P2v ]

M=
1
2 [

1 1 0
−2 2 0
1 −2 1]Again,

S u ,v =[1 u u2
]⋅M⋅[

P00 P 01 P02

P10 P 11 P12

P20 P 21 P22
]⋅M T

⋅[
1
v
v2]

N 0
2
t =1

2
1−2 tt 2



N 1
2
t =

1
2
12 t−2t 2



N 2
2
t =

1
2
t 2


v

(with t = u or v)

u

103

Computer Graphics

Subdivision surfaces

 Subdivision - patch S
1
(u,v)

P
00

P
02

P
22P

20

S
1
(u,v)

S1u ,v =S u/2,v /2=[1 u /2 u2
/4]⋅M⋅P⋅M T

⋅[
1

v /2
v2
/4] P=[

P00 P01 P 02

P10 P11 P12

P 20 P21 P 22
]

S1u , v =S u/2,v /2=[1 u u2
]⋅C⋅M⋅P⋅M T

⋅CT [
1
v
v2]

=[1 u u2
]⋅M⋅M −1 C⋅M⋅P⋅M T

⋅C T
⋅M −1


T
⋅M T

⋅[
1
v
v2]

=[1 u u2
]⋅M⋅M −1 C⋅M ⋅P⋅M −1

⋅C⋅M 
T
⋅M T

⋅[
1
v
v2]

=[1 u u2
]⋅M⋅P '⋅M T

⋅[
1
v
v2] P '=S⋅P S T S=M−1C⋅M

C=[
1 0 0
0 1 /2 0
0 0 1/4]

104

Computer Graphics

Subdivision surfaces

 Finally,

 Same developments should be done with the 3 other
quadrants, and will lead to the same “structure”

P '=S⋅P S T

P
00

P
02

P
22

P
20

S
1
(u,v)S=M−1

⋅C⋅M=
1
4 [

3 1 0
1 3 0
0 3 1]

P '=
1
16 [

3 1 0
1 3 0
0 3 1]⋅[

P 00 P01 P02

P10 P11 P12

P 20 P21 P 22
]⋅[

3 1 0
1 3 3
0 0 1]

P '=
1
16 [

3(3 P 00+P10)+3 P 01+P11 3 P 00+P10+3(3 P 01+P11) 3(3 P01+P11)+3 P02+P12

3(P00+3 P10)+P01+3 P11 P00+3 P10+3(P01+3 P11) 3(P01+3 P11)+P02+3 P12

3(3 P10+P 20)+3 P 11+P 21 3 P10+P20+3(3 P11+P 21) 3(3 P 11+P 21)+3 P12+P 22
]

P'
00

P'
20

P'
22

P'
02

105

Computer Graphics

Subdivision surfaces

 Subdivision - patch S
2
(u,v)

S 2(u , v)=S (u /2,(1+v)/2)=[1 u /2 u2
/4]⋅M⋅P⋅M T

⋅[
1

(1+v)/2
(1+v)2/4] P=[

P00 P01 P 02

P10 P11 P12

P 20 P21 P 22
]

S 2(u , v)=S (u/2,(1+v)/2)=[1 u u2
]⋅C u⋅M⋅P⋅M T

⋅C v
T [

1
v
v 2]

Cu=[
1 0 0
0 1 /2 0
0 0 1 /4]

=[1 u u2
]⋅M⋅(M−1C u⋅M)⋅P⋅(M−1

⋅C v⋅M)
T
⋅M T

⋅[
1
v
v2]

=[1 u u2
]⋅M⋅Q '⋅M T

⋅[
1
v
v 2] Q '=S u⋅P S v

T S u=M−1 Cu⋅M

C v=[
1 1 /2 1 /4
0 1 /2 1 /2
0 0 1 /4]

S v=M−1 C v⋅M

106

Computer Graphics

Subdivision surfaces

Q '=S u⋅P S v
T

P
00

P
02

P
22

P
20

S
2
(u,v)

S u=M−1
⋅C u⋅M=

1
4 [

3 1 0
1 3 0
0 3 1]

Q '=
1

16 [
3 1 0
1 3 0
0 3 1]⋅[

P 00 P 01 P02

P 10 P 11 P12

P 20 P 21 P 22
]⋅[

1 0 0
3 3 1
0 1 3]

Q'
00

Q'
20

Q'
22

Q'
02

S v=M−1
⋅C v⋅M=

1
4 [

1 3 0
0 3 1
0 1 3]

Q '00=3(P00+3 P 01)+P10+3 P11

(=P ' 01=3 P00+P 10+3(3 P 01+P11))

 Some of the points (2) are already computed, e.g.

107

Computer Graphics

Subdivision surfaces

 Extension to meshes showing an arbitrary topology

 The new vertices are obtained as a simple arithmetic mean of 3
categories of vertices :

 The vertices of the old mesh
 Vertices on the edges (barycentre of the extremities of the edge)
 Vertices inside a face (barycentre of the vertices of the face)

P
00

P
02

P
22

P
20

108

Computer Graphics

Subdivision surfaces

 Extension to meshes showing an arbitrary topology
1 – Computation of the vertices P' (for each vertex P, compute the
mean between P, the vertices on the adjacent faces, and the
vertices on adjacent edges)

109

Computer Graphics

Subdivision surfaces

 Extension to meshes showing an arbitrary topology
2 – For each face, link the corresponding vertices P'

110

Computer Graphics

Subdivision surfaces

 Extension to meshes showing an arbitrary topology
3 – For each old vertex, connect the new ones that have been
created for each adjacent face to this old vertex.

111

Computer Graphics

Subdivision surfaces

 Extension to meshes showing an arbitrary topology
4 – For each old edge, connect the new vertices that have been
created for each adjacent face to this old edge.

112

Computer Graphics

Subdivision surfaces

 Some points on the mesh and the limiting surface are
« extraordinary »

 These are vertices with a valence (number of incident edges) that is
different from 4.

 Everywhere the continuity of the limiting surface is C1 ; except at
extraordinary points, where it decreases to C0.

Im
ag

e
: w

ik
ip

ed
ia

113

Computer Graphics

Subdivision surfaces

 Catmull-Clark scheme
 Similar idea for bicubic B-Splines.

P
00

P
33

P
03

P
30

114

Computer Graphics

Subdivision surfaces

« face » vertices

« edge » vertices

« corner » vertices

- « Face » vertices are at the barycentre
 of the vertices of that face:

- « Edge » vertices are at the
barycentre of the extremities of the
edge and the two « Face » vertices
of the adjacent faces :

- « Corner » vertices are positioned
such that :

P f=Q

Pe=
QR

2

Pv=
Q2 Rn−3S

n
Q = mean of the barycentre of the incident faces
R = mean of the barycentre of the incident edges
S = original vertex
n = number of incident edges to S.

 Three types of vertices

115

Computer Graphics

Subdivision surfaces

 Reconnecting the new vertices

1 – Connect the « face » vertices to the « edge » vertices of
neighbouring edges

2 – Connect the « corner » vertices to the « edge » vertices of
incident edges

Im
ag

es
 :

K
en

 J
oy

 -
 U

C
L

A

116

Computer Graphics

Subdivision surfaces

 As with Doo-Sabin surface, the continuity is degraded for some
extraordinary vertices. The bicubic surfaces are therefore C2
everywhere except at extraordinary points : it is then only C1.

Im
ag

es
 :

Im
or

as
a

S
uz

uk
i

117

Computer Graphics

Subdivision surfaces

 Loop's scheme
 Allows to subdivide triangular meshes
 The limiting surface is C2 , except at extraordinary vertices of

valence <>6 , where it is only C1.
 The principle is to subdivide triangles into 4 sub-triangles.

 Corner vertices and edge vertices are created (in red).1
1

1

1
1

1

10
V 1
=

10 V +Q1+Q2+Q3+Q4+Q5+Q6

16

=
5
8

V +
3
8

Q

E 1
=

6V 1+6V 2+2 F 1+2 F 2

16

6
6

2

2

V1

E1

118

Computer Graphics

Subdivision surfaces

 As such, works only for vertices with a valence equal to 6
 It may be extended to other valences, but the formula has to be

adapted such that the resulting surface is smooth.
 Let

with

n is the valence of the original vertex.
 On boundaries : vertices should not move inside the surface, they

should rather slide along the boundary. One recovers the classical
cubic B-Spline scheme in that case

V 1
=αnV+(1−αn)Q

αn=(3
8
+

1
4

cos
3π
n)

2

+
3
8

E 1
=

V 1+V 2

2

E11 61

V1

11 V 1
=

6
8

V +
Q1

*
+Q2

*

8

(only if the vertices
are neighbours
on the boundary)

119

Computer Graphics

Subdivision surfaces

 Loop's scheme

120

Computer Graphics

Subdivision surfaces

 Kobbelt's scheme
 See paper on the course's website
 For a similar level of refinement, it generates less triangles than

Loop's scheme

√3

121

Computer Graphics

Subdivision surfaces

 Subdivision surfaces in CATIA

 A very easy-
to-use design
tool

 As S-s are
equivalent to
some class of
B-Spline
surfaces,
they retain a
good degree
of accuracy

 “CATIA
Shape”
module
Imagine
Shape (IMA)
tool

122

Computer Graphics

Architectural applications

 Catia in architecture
 Frank O. Gehry (Fish sculpture , Barcelona ,1992)

123

Computer Graphics

Architectural applications

 Catia in architecture
 Frank O. Gehry (Guggenheim museum, Bilbao ,1997)

124

Computer Graphics

Architectural applications

 Catia in architecture
 Frank O. Gehry (Guggenheim museum, Bilbao ,1997)

125

Computer Graphics

Architectural applications

 Catia in architecture
 Frank O. Gehry (Walt Disney concert hall, Los

Angeles ,2003)

C
arol M

. H
ighsm

ith

126

Computer Graphics

Ray tracing

127

Computer Graphics

Ray tracing

 Ray tracing principles
 Intersection of a ray shot from the eye with the objects

in the scene

Objects in the
scene

Ray of vision

illum
ination

Visible Point

Observer

Light sources

128

Computer Graphics

Ray tracing

 Algorithm
For every pixel
{
 calculate the ray of vision
 intersect the ray with the scene
 calculate the illumination of the visible point
 display the colour that is obtained
}

View plane (screen)
nx*ny pixels

129

Computer Graphics

Ray tracing

 Ray calculation

Point of view

View plane (screen)

Pixel position

Vision ray

View plane (screen)

Pixel position

Vision ray

Perspective projection

Orthographic projection

130

Computer Graphics

Ray tracing

 Ray calculation – orthographic projection
 We shall calculate the position p in the plane of the screen, and the

vector v

 A parametric equation is used

 But where is the screen in 3D space?

View plane (screen)

p

d

r t =pt d

131

Computer Graphics

Ray tracing

 Ray calculation – orthographic projection
 Determination of the view plane

 A reference linked to the camera is established : (e,u,v,w)
 The view plane is in the u-v plane ; that is specified by the values l, r, t,

b (see course on homogeneous coord.)
 The ray is then expressed as a

function of the (u, v) coordinates

e

w u

e
v

 v=t

u=
r

 v=b

u=
l

p=euuv v
d=−w

r t =pt d

132

Computer Graphics

Ray tracing

 Ray calculation – perspective projection

s
View ray

e=p

d=s-e

r t =pt d

133

Computer Graphics

Ray tracing

 Ray calculation – perspective projection
 Determination of the view plane

 The coordinates of s are (u,v,-d)
 The ray is then expressed as a

function of the (u, v, w) coordinates

 of the pixel s

w u

v

 v=t

u=
r

 v=b
u=

l

s=euuv v− d⋅w
p=e
d=s−e

r t =pt d

e

d

134

Computer Graphics

Ray tracing

 From the pixel to the picture

(0,0) (1,0) (2,0)

(0,1) (1,1)

i = -0.5

j = -0.5

i = 3.5

j = 3.5

u = l u = r

v = b

v = t

u=l
r−l i0.5

n x

v=b
t−b j0.5

n y

135

Computer Graphics

Ray tracing

 Intersection calculation
 Rays intersect scene objects

136

Computer Graphics

Ray tracing

 The ray has a parametric equation

 t>0 is needed to form a half-line
 A ray is directional

r t =pt d

137

Computer Graphics

Ray tracing

 Ray – sphere intersection
 Condition 1: to be along the ray

 Condition 2: to be on the surface of the sphere

 We substitute and transfer

 Quadratic equation in t

r t =pt d

∥x∥=1⇔∣x∣2=1

f x=x⋅x−1=0 Implicit form

pt d⋅pt d−1=0

138

Computer Graphics

Ray tracing

 Ray – sphere intersection
 SolutionS for t :

 Take the nearest solutions (t
min

) located on the “good”
side of the ray (t>0)

t=
−d⋅p±d⋅p2−d⋅dp⋅p−1

d⋅d

t=−d⋅p±√ (d⋅p)2−p⋅p+1 if d is unitary

139

Computer Graphics

Ray tracing

 Ray – box intersection
 It could be individually done by computing the

intersections with the 6 faces
 It is easier to do the intersections with the three

"slices"

140

Computer Graphics

Ray tracing

 Ray – slice intersection

ymin

ymax

xmin xmax

t ymin

t xmin

t ymax

t xmax

r t =pt d⇔{r x t = pxt d x

r y  t = p yt d y

pxt xmin d x=xmin

t xmin=xmin− px/d x

t xmax=xmax− p x/d x

p yt ymin d y= ymin

t ymin= ymin− p y/d y

t ymax= ymax− p y/d y

141

Computer Graphics

Ray tracing

 We have intersections with the slices. How to get the
intersections with the box?

 Combine the results ...
 The exit point of the ray is the smallest
 The entry point of the ray

 is the largest

 It must also verify
t ymin

t xmin

t ymax

t xmax

t *min

t *max

tmax≥tmin

tmin=max t xmax , t ymax

tmax=min t xmax , t ymax

142

Computer Graphics

Ray tracing

 Ray – triangle Intersection
 Condition 1: to be along the ray

 Condition 2: to be on the plane
of the triangle

 Condition 3 : to be inside the triangle
 We solve 1&2

r t =pt d a
n

x−a⋅n=0

pt d−a ⋅n=0

t=
(a−p)⋅n
d⋅n

143

Computer Graphics

Ray tracing

 Inside the triangle (oriented ...)
 Intersection of three half - planes
 We verify that we are

 in each half plane

or with the scalar triple product :
b

b−a ×x−a ⋅n0
c−b×x−b⋅n0
a−c×x−c⋅n0

b−a ,x−a ,n0
c−b ,x−b ,n0
a−c ,x−c ,n0

a

c

144

Computer Graphics

Ray tracing

 Ray – triangle Intersection
 Has to be fast
 Has to be robust
 There are a number of efficient algorithms

 Cf course website for pdfs

T. Möller and B. Trumbore. Fast, Minimum Storage Ray-Triangle
Intersection. Journal of Graphic Tools, 2(1), 21–28, 1997.
E. Galin, S. Akkouche, Fast processing of triangle meshes using triangle fans,
Intl Conf. On Shape Modeling and Applications, 2005
M. Shevtsov, A. Soupikov and A. Kapustin, Ray-Triangle Intersection
Algorithm for Modern CPU Architectures , GraphiCon International
Conference on Computer graphics & Vision, 2007

145

Computer Graphics

Ray tracing

 Raytracing basis :
Let S be a sphere(O,r)
For each pixel of the screen i,j
{
 ray r=camera.calculate_ray(i,j)
 S.intersect(r,0,+infinite,test_intersect,t)
 if (test_intersect) is true
 colourize the pixel i,j in white
}

146

Computer Graphics

Ray tracing

 Intersection with many primitives
 For a given direction, we want the nearest intersection

of the observer ... the idea is the following :

 This algorithm is linear with respect to the number of
primitives (there are better algorithms, see later)

group.intersect(r,tmin,tmax, tbest,nearest_surface)
{
 initialize tbest to +infinite
 initialize nearest_surface to « nothing »
 For each primitive s
 {
 Calculate the intersection of s with the ray r
 intersection = s.intersect(r,tmin,tbest)
 if (intersection) tbest = t ; nearest_surface = s
 }
}

147

Computer Graphics

Ray tracing

 Modification of ray-tracing and image obtained
Let be S a scene
For each pixel of the sreen i,j
{
 ray r=camera.compute_ray(i,j)
 c=S.getcolor(r,0,+inf)
 colourize the pixel with colour c
}

Scene.getcolor(r,tmin,tmax)
{
 group.intersect(r,tmin,tmax,surf,t)
 if (surf isn't empty) return the colour of
the surface
 else return the black colour
}

148

Computer Graphics

Ray tracing

 Shades
 We must consider the illumination of surfaces by one

or more lights
 The color returned to the observer depends on :

 the surface (material, colour)
 the angle of view
 angle of the light source
 the surface normal.
 These parameters are associated

with a model to calculate the color
perceived by the observer

 This model can be empirical or based
on physical considerations

nv l

149

Computer Graphics

Ray tracing

Physical quantities associated with the
propagation of light

150

Computer Graphics

Ray tracing

 What is the appropriate size or units
to represent
a colour or brightness?
 Power (W) ?
 Radiosity () ?
 Radiant intensity () ?
 Radiance () ?
 All these units assume the independence of the eye’s

sensitivity to the wavelength. This is obviously not
true!

Note : The solid angle of a cone is measured in steradians: it is the
measure of the intercepted surface by a unit radius sphere centred
on the apex of the cone.

W⋅m−2
⋅sr−1

W⋅sr−1

W⋅m−2

151

Computer Graphics

Ray tracing

 We prefer to use a different base unit that is the
candela or lumens per steradian ;

 1 lm = f(emission spectrum) * 1 W, is an SI unit
connected to the watt via a multiplicative factor
depending on the so called “standard observer”
 Luminous flux (Lumen = lm)
 Luminous intensity ()
 Illuminance ()
 Luminance () lm⋅m−2

⋅sr−1

lm⋅m−2

lm⋅sr−1
=cd

152

Computer Graphics

Ray tracing

 Radiance / Radiometry or
 Physical measurement of the electromagnetic energy
 unit based on the SI watt
 Laws of conservation of energy

 Luminance / Chroma
 Perceptual measurement of the quantity of light at

different wavelengths
 Units are based on the SI lumen
 Conservation laws if no fluorescence (change of

wavelength of the light by fluorescent chemical
compounds)

W⋅m−2
⋅sr−1

⋅(nm)−1

lm⋅m−2
⋅sr−1

=cd⋅m−2

W⋅m−2
⋅sr−1

153

Computer Graphics

Ray tracing

 A 100 W incandescent lamp
 1500 lumens or about 120 candelas if it emits uniformly in all

directions.
 Only a part of the light energy is emitted in the visible spectrum (the

rest is in infrared)

 A 21W fluorescent compact lamp
 About 1500 lumens too !
 Almost all of the energy is emitted in visible light

 Relationship between physical
intensity and perceptual intensity

I v=683.002∫
0

∞

I  y d 

W⋅nm−1lm
lm /W

154

Computer Graphics

Ray tracing

 Luminance (radiance) is the power per unit area
oriented perpendicularly to the ray; per unit solid angle

d ω⃗

dA

n⃗

L(x ,ω)=
d 2
Φ

d ω⃗⋅⃗n dA
=

d 2
Φ

d ωcosθdA

d ω⃗

dA

n⃗

Lumen or watts

m2steradians

θ

155

Computer Graphics

Ray tracing

 If the surface uniformly emits (constant L) a power
dQ, this relationship is verified:

d

dA

n

d

dA

n θ

dQ=∫ d2
Φ=∫ L dω cosθdA

dQ=∫
0

π
2

∫
0

2 π

L cosθsinθd ϕ d θdA

dQ=2π⋅L∫
0

π
2

sinθ cosθd θdA=π L dA

156

Computer Graphics

Ray tracing

Quiz :
 Does Radiance /

luminance increase if
the sunlight is
concentrated with a
magnifying glass?

 Do radiance / luminance
of an illuminating surface
depend on the visible
area (or the viewing
distance)?

157

Computer Graphics

Ray tracing

 Conservation laws for luminance
Experience on the perception of light



r

Emits light uniformly in all
directions

L=
P (lumens)

S (m2)⋅π (sr)

Sensor
Signal in Volts
U=g.P

c
diaphragms

 a

A

158

Computer Graphics

Ray tracing

 Conservation laws for luminance

 Solid angle of the sensor seen from the surface

 Light power entering the sensor

 The result does not depend on the distance!
 Luminance (or radiance) are preserved



r

 a

A

dA

dPc=⋅dA⋅L

=
 a

r 2



Pc=∫
A

δω⋅dA⋅L=δω⋅A⋅L=δω⋅r2
⋅σ⋅L

=δ a⋅σ⋅LSensor geometry

159

Computer Graphics

Ray tracing

 Conservation laws for luminance

 If a perfect lens is inserted:

 Light power entering the sensor

 The result does not depend on the optical path!



r

 a

A'

dA'

 '=


k

 '

Pc '= '⋅A'⋅L=⋅A⋅L=Pc

A'=k⋅A

160

Computer Graphics

Ray tracing

 Some characteristic values of the luminance
 Surface of the Sun: noon and clear atmosphere

(out of atmosphere :)
 Full moon at midnight
 TV screen, computer etc…
 A 2000 lumens multimedia projector, with a 2m*1.5m projection

screen , perfectly reflecting (albedo=1), light scattering by Lambert’s
law

 Luminance of a blank sheet of A4 paper (albedo = 0.6) exposed
perpendicularly to the sun rays (), perfectly diffusing

 In reality, closer to , because paper is not
perfectly diffusing (a fair part of the incoming flux is reflected mirror-
like, thus decreasing the amount of diffuse reflection)

Lν

0 ~ 2⋅109 lm⋅m−2
⋅sr−1

LTV=50 ~ 500 lm⋅m−2
⋅sr−1

Lm ~ 4000 lm⋅m−2
⋅sr−1

L p=
2000

1.5⋅2⋅π
~ 200 lm⋅m−2

⋅sr−1

Lν~ 1.6⋅109 lm⋅m−2
⋅sr−1

L f ~ 0.6
1.6⋅109

⋅6⋅10−5

π ~ 18000 lm⋅m−2
⋅sr−1

Ων~ 6⋅10−5 sr

L f ~ 10000 lm⋅m−2
⋅sr−1

161

Computer Graphics

Ray tracing

 During the restitution (display), a signal in volts U is
converted to light intensity.

 Let state that the emission of light is uniform and made in all
directions, so the luminance is given by

Screen pixel s

U

Pe=g ' (U)

L=
Pe

s⋅π
=

g ' (U)

s⋅π
=g ' ' (U)

Depends only on the
geometrical and physical
characteristics of the "pixel"

Emitted power
(Lumens ou watts)

gain, depends on
physical properties

162

Computer Graphics

Ray tracing

Conclusion :
 Luminance is the right variable to "display" in order to

accurately reflect the reality
 When using ray tracing, this is the adequate physical

variable that is associated with a ray and is
computed / transported along the ray.

163

Computer Graphics

Ray tracing

Some laws of light reflection

164

Computer Graphics

Ray tracing

 Incident light
 Lambert’s law (Jean-Henri Lambert 1728-1777)

The upper face receives
 a quantity of light


l

n

The upper face
receives a fraction of the
quantity of the emitted light cos=l⋅n

In fact, the upper face
receives a quantity of light
Proportional to

In all cases, the incident light is reflected in all directions with the same intensity

165

Computer Graphics

Ray tracing

 Perfectly diffuse surface model
 Also called Lambertian Surface
 It reflects light "equitably" in all directions
 The appearance (brightness)

 is not depending on
 the position of the viewer n

v l

166

Computer Graphics

Ray tracing

 Lambertian surface model
 Quantity of light received by elementary surface

 This is re-emitted with a uniform
luminance pattern

n
v l

d 

d

ds

dQ=Li⋅d ε⋅cosθ⋅ds (Lumens)

d ε=
dS

d 2

Surface dS

Ld=
dQ

ds⋅π
=Li⋅cosθ

d ε
π =cosθ I i

I i=Li⋅
d ε
π =Li⋅

d S

π d 2
is the incident illumination.

167

Computer Graphics

Ray tracing

 Lambertian surface model
 This surface has a color and

an albedo (coefficient of reflection)

n
v l

Ld=A I max n⋅l , 0

Incident
illumination (lm/m2)

Coefficient linked
to the albedo

Light (luminance) diffused
towards the observer

*The albedo is the ratio between the quantity of incident and reflected energy quantity (between 0 and 1)

Ld=k d I

168

Computer Graphics

Ray tracing

 Lambertian surface : Physical explanation
 Rough surface (no mirror effect)

 Penetration of the light rays
 diffusion by particles

(The particles and the matrix give the color of the surface !)
 A fraction of the light rays manage to get out

(parameter A of the Lambert model
 Everything happens at a very fine scale
 The outgoing light rays

can be considered as
coming out exactly
from the point of entry

~ 10m

169

Computer Graphics

Ray tracing

 Limits of the lambertian model
 Not adaped to conditions of grazing light...

 The lambertian model tends towards zero reflection...which is mostly
inaccurate with usual surfaces

 e.g. Moon’s surface : the luminance of the edges do not vanish ! (on a
full moon)

 Non-conductive surfaces (not metallic)
 "Rough" plaster, frosted ceramic, etc., bitumen, "rough" concrete,

opaque and frosted glass

170

Computer Graphics

Ray tracing

 Lambertian surface : matt appearance
 The returned luminance depends only on the position

of the source.

v l

A=0.4 A=0.6 A=0.8 A=1.0

171

Computer Graphics

Ray tracing

 Other models of diffuse reflection
 Oren-Nayar model

 Includes inter-reflection on the surface irregularities ... adds a roughness
parameter.

172

Computer Graphics

Ray tracing

 Lambertian surface : colour
 Albedo coefficient different for the three primary colors
 In practice, a single fixed coefficient (A) multiplied by a

coefficient depending on each colour (triplet
representing the colour of the material) are used


Ld

R

Ld
G

Ld
B =A

C R
⋅I R

CG
⋅I G

C B
⋅I B max n⋅l ,0

~ Colour of the incident light~ Colour of material

173

Computer Graphics

Ray tracing

 Image obtained with Lambertian shading
Scene.getcolor(r,tmin,tmax)
{
 group.intersect(r,tmin,tmax,surf,t)
 if (surf non empty)
 {
 point = r.eval(t)
 normal=surf.give_normal(point)
 return surf.shading(r,point,normal,source)
 }
 Else return the background color
}

surface.shading(ray,point,normal,source)
{
 v = -normalize(ray.direction)
 l = normalize(source.position-point)
 // calculate the lambertian shading
 return the colour
}

174

Computer Graphics

Ray tracing

 References

J. H. Lambert. Photometria sive de mensure de gratibus luminis, colorum umbrae.
Eberhard Klett, 1760

P. Kubelka and F. Lunk. Ein Beitrag zur Optik der Farbanstriche. Z. Techn. Physik,
12:593-601, 1931

S. Orchard. Reflection and transmission of light by diffusing suspensions. J. Opt. Soc.
Am., 59:1584-1597, 1969

J. Reichmann. Determination of absorption and scattering coefficients for non
homogeneous media. Applied Optics, 12:1811-1815, 1973.

M. Oren and S. K. Nayar “Generalization of Lambert’s reflectance model”, ACM
SIGGRAPH 1994 Proceeding.

175

Computer Graphics

Ray tracing

 Shadows ...
 The surfaces are not aware if something blocks the

light from the light source
 We have all we need to add a small test !
 Construct a ray from the lamp through the current

point on the surface and check that it does not
intersect any other surface in between...

176

Computer Graphics

Ray tracing

 Lambertian shading + shadows

surface.shading(rayon,point,normal,source)
{
 shadow_ray = ray(point,source.position – point)
 group.intersect(shadow_ray,tmin,tmax,t,surf)
 if surf is empty
 {
 v = -normalize(ray.direction)
 l = normalize(source.position-point)
 Calculate the lambertian shading
 return the obtained colour
 }
 else return black colour
}

177

Computer Graphics

Ray tracing

 Shadows
 Be careful when searching intersection of the ray from

the light source
 Is the numerically calculated intersection point with the ray from the

observer located exactly on the surface ?
 If it is a little bit toward the "outside", then everything goes as

planned
 If it is a little bit toward the "inside," then we find an intersection for

the ray from the source ...
 Solution :

ensuring that the beam used for
computing shadows starts at a small
distance from the surface
(toward the outside)

178

Computer Graphics

Ray tracing

 Shadows – correct treatment !

 shadow_ray = ray(point+normal*epsilon,
 source.position – point)

179

Computer Graphics

Ray tracing

 Multiple light sources
 Important to "fill-in" shadows
 Very simple implementation: for each light, add the

corresponding contribution

 Ambient shading
 A perfectly dark shadow is unrealistic

 Solution 1 : place a small source of light just next to the camera
 Solution 2 : add a constant contribution to shading determined

somewhere else

La=k a I a

Ambient reflected
light Ambient coefficient

Ambient light

180

Computer Graphics

Ray tracing

 Multiple light sources

surface.shading(ray,point,normal,sourceS)
{
 colour= ambient // eventuality black !
 For each source in sourceS
 {
 if not in shadows (see previously)
 {
 v = -normalize(ray.direction)
 l = normalize(source.position-point)
 calculate the lambertian shading
 colour = colour + calculated shading
 }
 }
 return colour
}

181

Computer Graphics

Ray tracing

 Specular reflection
 Light directly reflected from the surface (that do not

penetrate the material)
 For relatively smooth surfaces

 These surfaces reflect light preferentially in one direction

 The preferred direction is symmetric like for a mirror :

v
l

n

 '

= '

182

Computer Graphics

Ray tracing

 Specular reflection : physics
 The surface is perfectly smooth: mirror

 All the light from the source is reflected in one direction - special
case (see later)

 Some materials have a specular reflection that shows
a diffuse spot

 Even for pointwise sources !
 There is dispersion of the

orientation of the reflected light
(on either side of the
theoretical angle)

 This is due to the presence
of micro facets at the
surface of the solid

The statistical distribution of the orientation
of micro facets gives the size of specular point
for a pointwise light source

183

Computer Graphics

Ray tracing

 Specular reflection : physics
 The reflected colour is dominated by the colour of the

incident light
 The color of an object comes mainly from the partial absorption of

the transmitted rays in the matrix of the object (plastics, etc ...)
 However, the reflection coefficients are also dependent on the

visible wavelengths for some materials
 Copper, gold ...

visible

184

Computer Graphics

Ray tracing

 Specular reflection (Blinn-Phong model)
 Purely phenomenological model
 The mirror configuration implies that the h , the

bisector of v and l , is close to the normal n.
 The Blinn-Phong model is then :

h=
vl
∥vl∥

k s=C s max0, cos p

=C s max0,n⋅h p

v
l

n
h



Specular component of the
 reflected Light

Specular coefficient

Phong exponent
sometimes called "hardness"

Ls=k s I

includes the term
 !max n⋅l ,0

185

Computer Graphics

Ray tracing

 Specular reflection (Blinn-Phong model)
 The Phong exponent relates to the sharpness of the

lobe

-90 +90
0

1

cos cos2
 cos8

 cos64


186

Computer Graphics

Ray tracing

 Specular reflection (Blinn-Phong model)

C s

p

187

Computer Graphics

Ray tracing

 Specular reflection (Blinn-Phong model)
 If p is increased, we tend to a perfect mirror

 But only light sources are reflected!
 p is related to the smoothness of the surface

 The model drifts away from the reality for increasing p
 (we should see reflections of other objects in the scene!)

 It is useful for modelling plastic, "wax"-like surfaces,
rubber, etc....

188

Computer Graphics

Ray tracing

 Others models
 Phong model produces realistic results but does not

match any physical law
 Approximately, it approaches a Gaussian distribution of the

orientation of micro facets that would give :

 , m is a parameter between 0 and 1.
 Beckmann distribution: built on physical considerations

m is the average slope of micro facets.

k s=C s e
− m 

2

max n⋅l ,0 

k s=C s Db maxn⋅l ,0 Db=
1

4m2 cos4


e
− tan

m 
2

189

Computer Graphics

Ray tracing

 Cook-Torrance models
 Based on the distribution of Beckmann

+ Fresnel terms (partially reflected wave as a function
of the angle of incidence)

+ terms corresponding to the self-shadowing
(projected shadows by the micro facets on other mf.)

R. Cook and K. Torrance “A Reflectance Model for Computer Graphics” ACM Transactions
on Graphics, volume 1, number 1, January 1982 pages 7-24

k s=C s Rs

Rs=
Db F G

v⋅n

F=F 01−h⋅v 
5
1−F 0

Reflectance at normal incidence

G=min 1,
2h⋅nv⋅n

h⋅v
,
2 h⋅nl⋅n

h⋅v 

190

Computer Graphics

Ray tracing

 Self-shadowing

Process 2
Process 1

191

Computer Graphics

Ray tracing

 Ward model
 Includes anisotropy

 The micro facets are preferentially oriented
 Model for e.g. brushed metal.

192

Computer Graphics

Ray tracing

 References

Beckmann and Spizzichino “The scattering of electromagnetic waves from rough surfaces.”
MacMillan, New York, 1963, pages 1-33 and 70-98.

Phong B.T. “Illumination for Computer Generated Images” 1973
 “Illumination for computer generated pictures” ACM June 1975

J. Blinn “Models of Light Reflection for Computer Synthesized Pictures”, James F. Blinn,
ACM Siggraph ’77 Conference Proceedings

R. Cook and K. Torrance “A Reflectance Model for Computer Graphics” ACM Transactions
on Graphics, volume 1, number 1, January 1982 pages 7-24

G. Ward “Measuring and Modelling Anisotropic Reflection” , Computer Graphics 26, 2, July
1992

193

Computer Graphics

Ray tracing

 Specular reflection (Blinn-Phong model)

194

Computer Graphics

Ray tracing

 Specular reflection (Blinn-Phong model)
 “Faceted” aspect

 We must significantly increase the resolution to use the Phong
model on geometries that are faceted to get a realistic result

 Or It is necessary to know the exact geometry ...
 It is very computationally expensive

 There is an alternative: Phong interpolation

195

Computer Graphics

Ray tracing

 Phong interpolation
 Faceted exact geometry = geometry + error term

 The position error is small (we can barely see it)
 On the contrary, the error on normals is considerable

 The normal is constant on each facet !!

 Phong proposes to linearly interpolate the normal in
every facet from normal at the vertices of the facet

 These are known if we have the
exact geometry

 If not, we take the "average"
normal of connected facets

a

b
c

n

196

Computer Graphics

Ray tracing

 Phong interpolation


 u and v are calculated at the intersection of the ray
and the facet

 n
a
, n

b
 , n

c
 (, n

d
) are precalculated (before the ray

tracing itself) a

b
c

n*
=(1−u)nc+(1−v)nb+(1−u−v)na (Triangles)

n=
n*

‖n*‖

n

n*
=(1−u)(1−v)na+u(1−v)nb+u v nc+v (1−u)nd (Quads)

197

Computer Graphics

Ray tracing

 Phong interpolation

surface.shading(ray,point,normal,sourceS)
{
 colour= ambient // eventually black !
 For each source in sourceS
 {
 If not in shadow (cf previously)
 {
 v = -normalize(ray.direction)
 l = normalize(lamp.position-point)
 n=calculate_normal(point)
 calculate the shading (phong, lambertian, etc...)
 colour = colour + calculated shading
 }
 }
 return colour
}

198

Computer Graphics

Ray tracing

 Gouraud inteprolation
 Same idea as Phong interpolation
 We're working on the color obtained at the vertices of

the facet that are interpolated, instead of the normals
 Does not work with the Phong shading!
 Not used in ray tracing
 Advantage: very fast

199

Computer Graphics

Ray tracing

 All in all ... it usually takes ambient, diffuse and
Phong shading in the same model to have
something natural.
 Perceived brightness is a sum :

 Sum over all visible light sources from the point

L=LaLdLs

=k a I ak d I max 0,n⋅l k s I max 0,n⋅hp

L=La∑
i

[Ld iLsi]

=k a I a∑
i

[k d I i max 0,n⋅lik s I i max 0,n⋅hi
p]

200

Computer Graphics

Ray tracing

 Smooth surfaces
 Example : mirror

 Perfectly specular reflection
 The phong model is too far from the reality (infinitesimal dimension if

the point sources)

 We can model this by starting a new ray.
 The direction is the same as the one calculated in the model of

Phong
 The colour of the point is the color seen from that point in the

direction of reflection

 Some materials have a "glossy" appearance
 Combination of a mirror behavior and Lambertian + ambient

L=LaLdLm

201

Computer Graphics

Ray tracing

 Model for smooth surfaces
 The intensity depends on the angle of

incidence and material indices
 Transparent dielectric materials (Fresnel - Snell)

 Schlick’s approximation : with

 For electric conductors: almost total reflection (or constant
depending on the angle): a first approximation.

v

n

1 r

km
perp
= n1 cos1−n2 cos2

n1 cos1n2 cos2

2

2

km
para
= n2 cos1−n1 cos2

n2 cos1n1 cos2

2

n1sin 1=n2sin 2

r=v2 n⋅vn−v 
=2 n⋅vn−v

Lm=k m I i

k m=cste

Polarization
perpendicular to
the incidence
plane

Polarization
parallel to the
incidence plane

km=k m
perp
km

para
/2 k t=1−k m

perp
k m

para
/2

km
sch
=k 01−cos1

5
1−k 0 k 0= n2−n1

n2n1

2

indice n1

indice n2

202

Computer Graphics

Ray tracing

 Model for smooth surfaces

Brewster
angle

1
90°0°

k

1

0

k m
para

km
perp

km

k m
sch

km
perp
= n1 cos1−n2 cos2

n1 cos1n2 cos2

2

k m
para
= n2 cos1−n1 cos2

n2 cos1n1 cos2

2

k m=km
perp
km

para
/2

km
sch
=k 01−cos1

5
1−k 0

203

Computer Graphics

Ray tracing

 Refraction/Reflection
 Each ray is split (if conditions are met)

 Without control, for each emitted ray, a large number of rays is
generated recursively

 We may limit that number by counting the number of reflections /
refractions and stop after a certain value is attained

 We may limit by "killing" the rays whose attenuation is above a
certain threshold.

204

Computer Graphics

Ray tracing

 Plane that is slightly reflective

+ Lambert model

205

Computer Graphics

Ray tracing

 Justification of the Lambertian model
 Kubelka and al. 1931: model layers and and does not consider the

surface reflection, are the fractions of the incident and
reflected wavelength absorbed per unit length in the medium.

 Reichmann 1971: includes the term of the surface reflection

 is the internal reflectance of the material (cf Orchard.1969)
 Complex ? Assume that the incident wave is not absorbed by the

medium : so and then : what is
not reflected from the surface is sent in all directions independently
of the orientation.

RB(θ ,λ)=(1−Rs)
C (θ ,λ)(1−r i(λ))(R∞(λ)−D(θ))

2(1−r i(λ)R∞(λ))cosθ

withC (θ ,λ)=
ω(λ)cosθ(2 cosθ+1)

1−4(1−ω(λ))cos2
θ

 and D (θ)=
2cosθ−1
2 cosθ+1

R∞(λ)=
2−ω(λ)−2 √ 1−ω(λ)

ω(λ)
 with ω(λ)=

β(λ)

α(λ)+β(λ)

0 ,  1

ri 

 ,  

RB  ,=1−Rs

Reflectance : « ratio between the incident and reflected luminance »

