
1

Computer Graphics

Course outline

 Introduction
 Images and display techniques

 Bases
 Gamma correction
 Aliasing and techniques to remedy
 Storage

2

Computer Graphics

Course outline

 3D Perspective & 2D / 3D transformations
 Go from a 3D space to a 2D display device

 Two paradigms for image synthesis
 Representation of curves and surfaces

 Splines & co.
 Meshes

 Realistic rendering by ray tracing
 Concepts and theoretical bases

3

Computer Graphics

Course outline

 Introduction
 Images and display techniques

 Bases
 Gamma correction
 Aliasing and techniques to remedy
 Storage

4

Computer Graphics

Course outline

 Lighting
 Law of reflexion, Textures

 Colorimetry
 Color space
 Metamerism

 Graphic pipeline and OpenGL
 Primitives
 Discretization (Rasterization)
 Hidden faces

 Animations ?

5

Computer Graphics

Ray tracing

 Basic ray tracing
 One ray by pixel
 One shadow ray by point source of light
 One reflected ray, possibly a refracted ray, by

intersection

6

Computer Graphics

Ray tracing

 Discontinuous appearance
 Perfectly clear silhouette and infinite

field depth (clear image from 0 to
infinite)

 Cause : the camera’s pupil is like a
pinhole

 Sharp shadows
 Cause : pointwise sources of light

 Perfectly clear mirror reflections
 Cause : infinitely smooth surfaces

 Presence of aliasing
 Cause : from a pixel to another,

abrupt changes in brightness
 Aliased objects

7

Computer Graphics

Ray tracing

 Modeling imperfections is difficult !
 Diffuse shadows
 Depth of field
 Partially diffuse reflections

 Imperfect specular surfaces

8

Computer Graphics

Ray tracing

 Antialiasing
 Oversampling : for each

pixel, take the average
of several rays slightly
shifted (5, 8 or 16 ...)

 Increases rendering time

 Randomize position to
avoid any Moiré effect

<

9

Computer Graphics

Ray tracing

1 deterministic sample

10

Computer Graphics

Ray tracing

Oversampling on 10 samples

1 random sample

11

Computer Graphics

Ray tracing

Oversampling on 100 samples

Oversampling on 10 samples

12

Computer Graphics

Ray tracing

 Diffuse samples vs sharp shadows

13

Computer Graphics

Ray tracing

 Diffuse shadows vs sharp shadows
 Apparent diameter of the sun (and of the moon) : a=0.53°

14

Computer Graphics

Lancer de rayon

 Diffuse shadows

 Amounts to decompose the light source into several, slightly
offsetted in space, pointwise light sources of lower intensity

For each point, calculate
several shading rays

 Add the contributions from
the source only for rays
not intersecting the object

15

Computer Graphics

Ray tracing

 Two approaches
 Place additional light sources and perform rendering

 Problem : it takes a lot of such sources to achieve a realistic result
 The sources are positioned once and for all ...

 Use a sampling technique ...
 … such that for each point, the fraction of light source not hidden by

objects is approximately calculated by evaluating the following
integral :

I=L∬

S d

S =1

S =0

16

Computer Graphics

Ray tracing

 Monte Carlo integration
 One wishes to compute approximately
 We set

 We choose the points in a pseudo-
random way (in a canonical setting)

 For each h
i
 we verify that we are in W , and if

this is the cas, we verify that the source is visible,
If these conditions are met it returns 1, otherwise 0.

 The factor meas(W) is calculated so as to obtain 1
if the light source is totally visible.

∬
W

f (h)d h≈
1

N meas(W)
∑
i=1

N

f (hi)

∬

f d

 i

meas (W)=
4
π

17

Computer Graphics

Ray tracing

 Characteristics of the Monte Carlo integration
 No regular grid
 If, for N points, the result is not accurate enough, it is easy to use 2N

points without losing the calculations already made
 Convergence rate

 Random sequence:
 "Low variance" sequence (Quasi-Monte-Carlo): (in practice)

 (worste cas)

1

N 1
N

ln N d

N

18

Computer Graphics

Ray tracing

 Sequences used for the MC integration

Random sequenceQuasi-random low variance
sequence obtained
by clustering

19

Computer Graphics

Ray tracing

1 source, intensity I

40 fixed sources I
i
=I/40

8 samples with
Quasi-Monte-Carlo
integration

20

Computer Graphics

Ray tracing

 Depth of field
 The camera lense, eye, etc. .. cannot produce a sharp

image from 0 to infinity.
 Geometrically, only objects on a given plane are sharp.

 Important concept !
 Qualitative distance information
 Bring what is important out (eg. portrait on blurred background)

21

Computer Graphics

Ray tracing

 Three techniques to account for the depth of field:
 By Post-processing

 Calculate the image without changing...
 At each point of the image, one has an idea of the depth (Z-buffer)
 With this z variable, blur the image starting with points far away and

proceed toward the observer
 This is done is in Blender
 Not very accurate and frequently, artifacts are visible

 Successive rendering
 Several complete renderings with camera positions slightly shifted,

which are then merged
 Similar to the calculation of shadows with n stationary sources – slow !

 Monte Carlo
 Each pixel is made with n separate calculations with slightly modified

(quasi-random) positions of the camera
 Similar to the calculation of shadows (2nd method)

22

Computer Graphics

Ray tracing

23

Computer Graphics

Ray tracing

 Imperfect mirror reflections
 Due to surface irregularities

 The incident beam is reflected in a direction having a certain
variance around the "mirror" configuration

 Sample randomly

 It is indeed a specular reflection
 Here, we want to see the image of other objects (Phong shading

does not allows this)

24

Computer Graphics

Ray tracing

100 samples per point on the flat surface

25

Computer Graphics

Ray tracing

 Ray tracing with sampling
 Provides more realistic images
 Significant CPU cost ... but simple implementation
 Also called "distribution

ray tracing"
 Each pixel is not the result of

a single ray but instead the result
of a distribution of rays

 Non-deterministic
approach are used
(quasi-random distribution)
to avoid the Moiré pattern

 Statistical treatment is possible

2 samples

26

Computer Graphics

Rendering equation

27

Computer Graphics

Rendering equation

 Until now, the procedure only takes into account the
illumination of diffuse surfaces by direct light sources

 It solves very approximately what is called the
"rendering equation"

 Light energy balance written for any point on the surface

 = light leaving the point
 = emitted light
 = incident light
 = function of bidirectional

 spectral reflectance (« BRDF »)
 Attenuation factor related to the angle of incidence

Lo (x ,ω ,λ)=Le(x ,ω ,λ)+∫
W

Li(x ,ω' ,λ)(ω'
⋅n) f r (x ,ω' ,ω ,λ)dω'

Lo (x ,ω ,λ)

f r (x ,ω' ,ω ,λ)

ω
'
⋅n

lm⋅m−2
⋅sr−1

sr−1 Li (x ,ω ,λ)
Le (x ,ω ,λ)

W
ik

ip
ed

ia
 I

m
ag

e

n

Infinitesimal
solid angle

28

Computer Graphics

Rendering equation

 Expression of the rendering equation as a
function of infinitesimal surface elements

L(x ,ω ,λ)=Le (x ,ω ,λ)+∫
W

f r (x ,ω' ,ω ,λ)L(x ,ω' ,λ)(ω'
⋅n)dω'

L(x ,ω ,λ)=Le (x ,ω ,λ)+∫
S

f r (x ,ω' ,ω ,λ)L(x ' ,ω' ,λ)G (x , x '
)dA'

(x '
)

G (x , x '
)=

cosθ cos θ'

‖x−x '
‖

2 V (x , x'
)

V (x , x'
)={1 if visible

0 if not visible

nx
dA x

∥x−x '
∥

'

x'

(ω
'
⋅n)d ω'

=cosθdω'

d ω'
=

cosθ'

‖x−x '
‖

2 dA'
(x'
)

'

dA'
 x'

n'

29

Computer Graphics

Rendering equation

 How to solve ?
 Finite element method (radiosity)

 Mesh surfaces
 Approximation of the radiosity on each element
 Solving a linear system with N unknowns
 Restricted to a simple form of diffuse reflection models

 Stochastic methods
 Based on ray tracing
 Takes the conservation of energy into account
 Based on the calculations of probabilistic paths from the light

source to the observer
 More varied physical models

30

Computer Graphics

Rendering equation

 Stochastic methods
 Metropolis Light Transport : an efficient method

 Solves the rendering equation in an unbiased way
 Simple implementation, good convergence properties
 Cf article of 1997:

 An addition to Blender allows you to use this method cf website

 Allows the calculation of global illumination for 'difficult' scenes
 ex. dark room next to a bright room separated by a door slightly ajar

E. Veach and L.J. Guibas, Metropolis Light Transport. In SIGGRAPH' 97:
Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques, 1997, pp. 65-76.

www.luxrender.net

31

Computer Graphics

Rendering equation

32

Computer Graphics

Radiosity

 Finite element method (radiosity method)
 Assume all surfaces are discretized in n patchs P

i
 .

Each patch P
i
 has an aera A

i
, an orientation n

i
, a

radiosity B
i
, ...

 The amount of energy transmitted from the patch P
i
 to the patch P

j

depends on their relative orientation, area, and other geometrical
parameters.

n
i

A
i

A
j

n
j

33

Computer Graphics

Radiosity

 Radiosity equation

 We assume a Lambertian reflection
There is therefore independence from the orientation

 We can therefore integrate the radiance (luminance) in any direction
(hemisphere) : radiosity is obtained

 Similarly with the reflectivity:

f r x ,' , ,= f r x ,

B x ,=∫

L x ,cosd = L x ,

L x , ,=L x ,

A=1

R x ,=∫

f r x ,cos d = f r x ,

Le x , ,=Le x ,

L x , ,=Le x , ,∫
S

f r x ,' , , L x ' ,' ,G x , x'
dA'

x '

nx
dA x

'

x'

'

dA'
 x'

n'

34

Computer Graphics

Radiosity

 We finally obtain (at each point x):

 F is a shape factor : percentage of light leaving dA'
coming on dA .

B x=Be xR x ∫
S

B x '
F x , x '

dA'
 x '

F x , x '
=

G x , x '

L x , ,=Le x , ,∫
S

f r x ,' , , L x ' ,' ,G x , x'
dA'

x '

35

Computer Graphics

Radiosity

 Radiosity equation

 Integral equation of the second kind

B x=Be xR x ∫
S

B x '
F x , x '

dA'
 x '

f x=g x∫ k x , x'
 f x'

dx '

36

Computer Graphics

Radiosity

 Solving of radiosity equation: space discretization
 No need for a

conforming mesh
 Variable size

37

Computer Graphics

Radiosity

 Solving of radiosity equation: space discretization

 It will be assumed constant variable on patch P
i

 The shape functions N
i
 are equal to 1 on the patch P

i
 and 0

everywhere else...

B x=Be xR x ∫
S

B x '
F x , x '

dA'
 x '

B x=∑
i

Bi N i x

Be x=∑
i

E i N i x

R x=∑
i

Ri N i x

38

Computer Graphics

Radiosity

 Conversion towards a discrete linear system...

 This equation is satisfied for each point x . So we can
integrate on each patch...

B x=Be xR x ∫
S
∑

j

B j N j x
'
F x , x '

dA'

∑
i

Bi N i x=∑
i

E i N i x ∑
i

Ri N i xB j [∑j
∫
S

N j x
'
F x , x '

dA'

]

∫
S ∑i Bi N i x dA=

∫
S ∑i E i N i x∑

i

Ri N i x B j [∑j
∫
S

N j x
'
F x , x'

dA'

]dA

Bi Ai=E i AiRi∑
j

B j∬
S 2

F x , x '
N i x N j x

'
dA dA'

39

Computer Graphics

Radiosity

 We have

 We set :

 Reciprocity :

 Unity sum :

F x , x '
=

coscos '

∥x−x '
∥

2
V x , x '

T ij=T ji=∫
Ai

∫
A j

coscos '

∥x−x '
∥

2
V x , x '

dA dA'

T ij=Ai F ij

T ij=Ai F ij T ji=A j F ji A j F ji=Ai F ij

∑
j

F ij=∑
i

F ji=1

40

Computer Graphics

Radiosity

 Finally,

 Use reciprocity …

 Linear system of radiosity

Bi Ai=E i AiRi∑
j

B j A j F ji

Bi=E iRi∑
j

B j F ij

A j F ji=Ai F ij

1−R1 F 11 −R1 F 12 ⋯ −R1 F 1 n

−R2 F 21 1−R2 F 22 ⋯ −R2 F 2 n

⋮ ⋮ ⋱ ⋮

−Rn F n1 −Rn F n 2 ⋯ 1−Rn F n n

B1

B2

⋮

Bn
=

E1

E 2

⋮

E n
 I−K B=E

41

Computer Graphics

Radiosity

 It remains to calculate F
ij
and solve the system.

 For a scene, it is done once, whatever the viewpoint

 Calculation of F
ij
 (This is the most expensive operation!)

 Purely geometrical
 There are n2

 Many vanish :
 Mutually hidden patches
 Incompatible orientation
 F

ii
 terms if the patches are plane

42

Computer Graphics

Radiosity

 Calculation of Fij

 Brute force: numerical
integration for each pair
of patches Pi - Pj

 One can use a Gaussian
quadrature.

 If the patches are distant,
the term is calculated
with 1 point !

T ij=∫
Ai

∫
A j

coscos '

∥x− x'
∥

2
V x , x '

dA dA'T ij=Ai F ij

∫
−1

1

f x dx≈∑
i=1

n

wi f x i

43

Computer Graphics

Radiosity

 Gauss points for the
triangle

∫
T

f x , y dxdy≈A∑
i=1

n

wi f x i , y i

44

Computer Graphics

Radiosity

 There are other methods:
 Projection of patches Pj on a "hemicube" centered on the patch Pi
 The calculation of Fij is reduced to the calculation of the form factor

between patch Pi and the projection of Pj on the hemicube.
 The hemicube is discretized: the projection is a collection of squares

whose contribution to Fij is simple

cf. « Computer Graphics : Theory into practice, Jeffrey McConnell,
Jones & Bartlett ed. » for more details.

45

Computer Graphics

Radiosity

 Solving of the linear system
 Iterative by Gauss-Seidel
 Direct methods (LU or gaussian pivoting) usually too slow.
 We do not seek high accuracy...

1−R1 F 11 −R1 F 12 ⋯ −R1 F 1n

−R2 F 21 1−R2 F 22 ⋯ −R2 F 2 n

⋮ ⋮ ⋱ ⋮

−Rn F n 1 −Rn F n 2 ⋯ 1−Rn F n n

B1

B2

⋮

Bn
=

E1

E 2

⋮

E n
 I−K B=E

46

Computer Graphics

Radiosity

 Jacobi iterations

 For i = 1 to n

 We initialize with
 Slow convergence (but easily scalable)

 Gauss-Seidel iterations

 For i = 1 to n
 Same initialisation.
 Faster convergence than the Jacobi method (but parallelization is

more difficult)

 I−K B=E

Bi
k
=E iRi∑

j=1

n

F ij B j
k−1

B0=E

Bi
k
=E iRi ∑

j=1

i−1

F ij B j
k
∑

j=i

n

F ij B j
k−1

Bk =K Bk−1
E

47

Computer Graphics

Radiosity

 After the radiosity calculation are done, display the
resulting radiosity

 The value of radiosity of each patch is simply used as
a texture, changing emissivity of the corresponding
surface.

 The construction of the image is done by conventional
raytracing

 Note: Initialization of emitting surface can be done by applying the
algorithm of ray-tracing with "classical" (point) sources

 The radiosity calculation does not depend on the position of the
viewer

 The result of the calculation can be used, also for the real-time
rendering (OpenGL or others)

48

Computer Graphics

Radiosity

 Radiosity calculation: evolution of convergence

 Issues with radiosity simulations
 Difficulty with sharp shadows
 Result depends on the discretization !
 High memory use / slow calculations
 Limitations to diffuse surfaces

49

Computer Graphics

 Cornell box (1984-1985)

Radiosity

Measured radiosity (CCD image) Calculated radiosity

50

Computer Graphics

Textures

51

Computer Graphics

Textures

 The materials we see in everyday life have variable
surface properties

 Example : wood
 Uniform at a very large scale, but strongly variable at small scale
 Color varies
 Specularity
 Direction of anisotropy
 Etc...

52

Computer Graphics

Textures

 Example 2 : checkerboard
 Repeated geometry
 Color changes
 Handmade artifact...

53

Computer Graphics

Textures

 To design a texture:
 Solution 1

 Model each area as separate objects, and assign a specific material
 Works for simple textures (checkerboards)
 Difficult to realize continuous variations such as for wood

 Solution 2
 Define a function that assigns to each point on the surface a

different characteristic
 An artifact's surface is bi-dimensional (u,v)
 One can thus apply an image onto the geometry of the artifcat
 Often, simple bitmaps are used

54

Computer Graphics

Textures

Textures can account for variations of the
surface's properties
 This is a function (often a scalar) of space coordinates

on a surface
 Affects the color, reflection model parameters (phong p. ex.)
 May also affect the geometry: the surface itself is disturbed or the

calculation of normal is disturbed

 Allows very fine modeling even with a coarse
geometric model

 Instead of having a very fine geometric model, a kind of image is
applied on the surface at each point defining the precise
characteristics.

55

Computer Graphics

Textures

 Texture = function of (u,v)
 Problems is the application of textures: where is the image projected

onto the surface defined in (u, v)?
 Only easy for rectangles (direct mapping)
 Otherwise, transformations are needed (more interesting!)

 We're talking about flat textures, but there are also 3D
textures

 Function of (u,v,w)
 This texture is assessed only on

the surface of the volume
(special case: transparent volumes)

 Interesting for solid materials
 Often this is defined analytically

(or via a procedural definition)
 Example : rendering of a block of

carved wood.

56

Computer Graphics

Textures

 Texture coordinates
 How to apply the texture?

 What is needed is a function f that maps (u,v) to (x,y,z)
 This looks like a parametric surface definition
 In fact, if the surface is parametrically defined, we have this function

f naturally
 When calculating the

intersection of a ray
with the surface,
the couple (u,v) is
immediately
obtained. u , v

x , y , z

Bidimensional texture
 in the field D

f : D S

Tridimensionnal surface
S

57

Computer Graphics

Textures

 Texture coordinates
 Parameterization (u,v) do not generally preseve

measures of angles, lengths, or areas.
 We would like the placement of the texture to be

controlled so that its appearance (in (x,y,z)
coordinates) is suitable.

 In the following, let's consider an application f :
(u,v) → (x,y,z).

 This function defines a surface
 In particular, it allows to apply an image on a surface

58

Computer Graphics

Textures

A surface is expressed in this form:

u,v are two real parameters
 All points on the surface are

obtained by varying u and v.

P u , v ={
x= f u , v
y=g u , v
z=hu , v

x

y z

u,v

u=cste

v=cste

59

Computer Graphics

Textures

We can define a curve on the surface:
Parametric space Ambient space

x

y z

t

u=cst

v=cst

P u , v : {
x= f u , v
y=g u , v
z=hu , v

 t :{
x= f u t , v t
y=g u t , v t
z=hu t , v t

uv
t : {u=u t

v=v t

60

Computer Graphics

Textures

Regularity and continuity of the parameterization

 A parametric surface is of class C
k
 if the application

P(u,v) is of class C
k
. (i.e. k-times differentiable)

 A parameterization is regular if and only if

 The points that are not satisfying this are singular
points.

 Equivalent-C
k
 parametrizations are regular ont the

same domain...

∂ P⃗
∂ u
(u0 , v0)×

∂ P⃗
∂ v
(u0 , v0)≠0⃗ ∀(u0 , v0)∈D⊂ℝ2

61

Computer Graphics

Textures

Differential geometry for parametric surfaces

 Position P :

 Unit tangent vectors T u and T v :

 These vectors are not always perpendicular

 Tangent plane (parametric form)

T u
u , v=

∂ P
∂u
⋅∣∂ P
∂ u ∣

−1

=
P u

∣P u∣
T v
u , v =

∂ P
∂ v
⋅∣∂ P
∂ v ∣

−1

=
Pv

∣Pv∣

P u , v=[
x u , v
y u , v
z u , v] Pu

=
∂ P
∂ u

Puv
=
∂

2 P
∂u ∂v

⋯

Pt u0 , v0
a ,b=P u0 , v0a⋅T u

u0 , v0b⋅T v
u0 , v0

a , b∈ℝ2

62

Computer Graphics

Textures

 Normal vector N :

N (u , v)=
Norm(u , v)

|Norm(u , v)|
 with Norm(u , v)=T u

×T v or Pu
×P v

T u

T v

N

63

Computer Graphics

Textures

 Area:

1st fundamental form
 Other notation of a the area

du P u

dv P v

dS

A=∬
S

dS

dS=∣du⋅Pu
×dv⋅Pv

∣=∣Pu
×P v

∣dudv

∣a×b∣2=a⋅a ⋅b⋅b−a⋅b2

A=∬
D

√(eg− f 2
)dudv

Lagrange's identity

dS=√(e g− f 2
)dudv with e=Pu

⋅Pu , f =Pu
⋅P v , g=P v

⋅P v

64

Computer Graphics

Textures

 Calculate the length of a curve on a surface

uv
t : {u=u t

v=v t
 t :{

x= f u t , v t
y=g u t , v t
z=hu t , v t

'
=

dP ut , v t
dt

u '
=

du t
dt

⋯

P u , v : {
x= f u , v
y=g u , v
z=hu , v

Pu
=
∂ P u , v
∂u

Pv
=
∂ P u , v
∂ v

d uv
 t =du

dv =u
' dt

v ' dt

65

Computer Graphics

Textures

L=∫
a

b

|Γ⃗'
(t)|dt=∫

a

b

√|Γ⃗'
(t)|

2
dt

Γ
'
(t)=u'

(t)Pu
(u(t) , v (t))+v '

(t)Pv
(u(t) , v (t))

∣
'
t ∣2=e u'

 t 22 f u '
t v '

t g v '
t 2

with e=Pu⋅Pu , f =Pu⋅P v , g=P v⋅Pv

 Derivation in series:

66

Computer Graphics

Textures

 If we set

which amounts to

(we have)

, it is in fact a quadratic form:

ds=√e u '
(t)2+2 f u'

(t)v '
(t)+g v '

(t)2 dt

L=∫
sa

s b

ds=sb −sa

ds=e du2
2 f dudvg dv2

e u '
t 22 f u'

t v '
t g v '

t 2=u'
t v '

 t e f
f g u

'
t

v '
t

L=∫
a

b

 u'
t v '

t e f
f g u

'
t

v '
t dt

67

Computer Graphics

Textures

 Angle between two curves ...

cos=

u1
'
t v1

'
 t e f

f g u2
'
t

v2
'
t

 u1
'
t v1

'
t e f

f g u1
'
t

v1
'
t u2

'
t v2

'
t e f

f g u2
'
t

v2
'
 t

1
'
 t ⋅2

'
t =∣1

'
 t ∣∣2

'
t ∣cos=u1

'
t v1

'
 t e f

f g u2
'
t

v2
'
t

68

Computer Graphics

Textures

 The 1rst fundamental form is the application

 It is a symmetric bilinear form that can "measure" actual distances
from variations in the parametric space ...

 The M
1
 matrix is a representation of the metric tensor.

 M
1
 is also related to the Jacobian matrix

 of the transformation (u,v) → (x,y,z) (It is JTJ).

1d 1
uv , d 2

uv
=du1 dv1 e f

f g du2

dv2
=du1 dv1 M1du2

dv2

L=∫
a

b

1d
uv , d uv

dt cos=
1d 1

uv , d 2
uv

1d 1
uv , d 1

uv
1d 2

uv , d 2
uv

A=∬
D
√ det M1 dudv (=∬D det J dudv under some conditions)

with e=Pu⋅P u , f =Pu⋅P v , g=P v⋅P v

J=
∂ x /∂u ∂ x /∂ v
∂ y /∂ u ∂ y /∂ v
∂ z /∂u ∂ z /∂ v

69

Computer Graphics

Textures

 Back to our textures
 An image is to be applied on a curved surface
 If the coordinates u,v are used as texture coordinates, the areas are

not generally preserved.
 Using the first fundamental form, we can compensate this by

defining an alternative parametrization
 Example: a sphere

P (u , v)={
x (u ,v)=r⋅cos u cos v
y (u , v)=r⋅sin u⋅cos v
z (u , v)=r⋅sin v

(e f
f g)

e=r2
⋅sin2 u cos2 vcos2 u cos2 v

f =r2
⋅(sin u cos v sin v cos u−sin u cos v sin v cos u)=0

g=r2
⋅cos2 u sin2 vsin2 u sin2 vcos2 v

70

Computer Graphics

Textures

 Back to our textures
 First fundamental form and the metric tensor

 Area ratio as a function of the position

 Ratio of the distances in function of the position (iso-u and iso-v)

M1= e f
f g

e=r2
⋅sin2 ucos2 vcos2 u cos2 v =r2 cos2 v

f =r2
⋅sin ucos v sin v cos u−sin u cos v sin v cos u=0

g=r2
⋅cos2 u sin2 vsin2 u sin2 vcos2 v =r2

dA=det M1 dudv

det M1=e⋅g=r2
∣cos v∣

dL=1 d
uv , d uv

71

Computer Graphics

Textures

 We set (we are interested in the
direction u)

 With (direction v)

 (independent of the position)

dL=1 d
uv , d uv

=dt 1 0 e f
f g 10

d uv
=dt⋅10

 0 1 e f
f g 01= g=r

d uv
=dt⋅01

 1 0 e f
f g 10=e=r∣cos v∣

72

Computer Graphics

Textures

 An image to display is centered at (u
0
,v

0
) on the

sphere : how to prevent it from deforming too much?
 What is the connection that must be made

between the texture coordinates
and the parameters (u,v) ?

 Suppose that is aligned with (u, v)
 We want to keep the distances according to

 and .
 We set

(u
0
,v

0
)

 ,

 ,

1 :u= f 1

*

v

2 : u

v= f 2
*

d 1:
∂ f 1

*

∂
*

d *

0
d 2 :

0
∂ f 2

*

∂
*

d *

73

Computer Graphics

Textures

 Calculate the actual distance along : it must be
equal to

1

L =∫
0

1d
1 , d 1

=

L =∫
0

∂ f 1
*

∂
*

d * 0⋅ e f
f g

∂ f 1
*

∂
*

d *

0

L =∫
0

e ∂ f 1
*

∂
*

2

d *
=r cos v [f 1 − f 10]

r cos v [f 1− f 10]=

f 1(h)=
h

r cos v
+ f 1(0) with f 1(0)=u0

74

Computer Graphics

Textures

 Same along : actual distance =
2

L =∫
0

1d
2 , d 2

=

L =∫
0

 g ∂ f 2
*

∂
*

2

d *
=r [f 2 − f 2 0]

r [f 2 − f 2 0]=

f 2 (ξ)=
ξ

r
+ f 2(0) with f 2(0)=v0

75

Computer Graphics

Textures

 Change of coordinates

 Is the area preserved ?

 Yes if

u=

r cos v
u0=

r cos rv0
u0 =u−u0r cos v

v=

r
v0 =v−v0r

dA=det M1
* d d

M 1
*
= e

* f *

f * g *
with e*

=Ph⋅Ph , f *
=Ph⋅Pξ , g *

=Pξ⋅Pξ

det M1
*
=1

76

Computer Graphics

Textures

 Computation of the terms of the metric tensor

P=r⋅{
−
∂ u
∂

sin u cos v

∂u
∂

cos u cos v

0

P u ,v ={
x u , v =r⋅cos u cos v
y u , v=r⋅sin u⋅cos v
z u , v=r⋅sin v

 P ,={
x=r⋅cos u ,cos v ,
y=r⋅sin u ,⋅cos v ,
z=r⋅sin v ,

u ,=

r cos rv0
u0 v ,=

r
v0

P=r⋅{
−
∂ u
∂

sin u cos v−
∂ v
∂

cos u sin v

∂u
∂

cos u cos v−
∂ v
∂

sin u sin v

−
∂v
∂

cos v

77

Computer Graphics

Textures

→ Preservation of the area (this is by chance)

e*
=P⋅P=r2 ∂ u

∂
2

cos2 v

f *
=P⋅P=r 2 ∂ u

∂

∂u
∂

cos2 v

g *
=P⋅P=r2∂u

∂
2

cos2 v1
det M1

*
=e* g *

− f * 2
=r
∂ u
∂

cos v

=
r

r cos

r
v0

cos

r
v0=1!

78

Computer Graphics

Textures

u

v

x

y

z

79

Computer Graphics

Textures

 Texture coordinates
 For non parametric surfaces

 Example : discretized surfaces (triangles)
 (u, v) is not obtained in the calculation of the intersection of a ray

with the surface
 We must define the inverse operation f :

 For a point P, the texture is obtained at the position
 We must construct a

plausible
parameterization of the
triangulated surface

 u,v must be stored
at each vertex
of the mesh

u , v

x , y , z

Dimensional texture in
the domain D

: SD

Three-dimensional
surface S

 : SD

P

80

Computer Graphics

Textures

 Construction of a parameterization of a triangulated
surface (mesh)

 Possibility 1) : Projection of the mesh vertices on a topologically
equivalent surface (ex. Plane, sphere ...)

 Knowing the projection, the surface's
parameterization is directly associated it

 If the triangulation comes from a "complex" surface (e.g. Bezier type),
this technique is used. The projection step is not necessary (the vertices
are on the surface), it suffices to assign to each vertex the values of the
parameter on the original surface.

u , v

81

Computer Graphics

Textures

 Construction of a parameterization of a triangulated
surface (mesh)

 Possibility 2) : "Flatten" the mesh and build parameterization

Goal here: build a parameterization that respect some of the
following qualities :

 Low distortion (angle conservations)
 Area ratios are roughly preserved
 Natural coordinates (in geodesic distances)

 Rather complex algorithms, solutions to the problem are quite recent
 Amounts to solve partial differential equations

82

Computer Graphics

Textures

u

v

Texture in the
parameteric
space

u

v

Triangles
in the parameteric
space (here,
conforming mapping)

Triangles in
real space

Texture
in the real space

C
G

A
L

 li
br

ar
y

(L
. S

ab
or

et
, P

. A
ll

ie
z,

 B
. L

év
y)

http://www.cgal.org/...

http://www.cgal.org/Manual/last/doc_html/cgal_manual/Surface_mesh_parameterization/Chapter_main.html

83

Computer Graphics

Textures

 Texture coordinates
 For periodic textures

 The application may be non bijective

 Example : brick wall, checkerboard, etc...
 But also pseudo-random textures - one should not see the periodicity

but the base texture is set on a small area only.

u , v

x , y , z

Dimensional texture
in the domain D

: SD

Three-dimensional surface S

: SD

84

Computer Graphics

Textures

 Examples of applying textures
 Parametric surface: a sphere

uv
x=r sin u cos v
y=r sin u sin v

z=r cos u
JPG image (projection called « Plate Carrée »)

85

Computer Graphics

Textures

 The application of texture here concerns the color
(color defined by the used image)

 One can change the other parameters of the models
of reflection

 Emissivity (light source)
 Specular
 etc...

 It can also affect the geometry
 Local modification of the surface shape
 Modification of the normal vectors (cf. Phong interpolation)

86

Computer Graphics

Textures

 Using a picture at night,
changing the emissivity
setting in addition to the
color

87

Computer Graphics

Textures

 Geometry modification
 Possibility 1 - Simply moving the geometry

 Texture (scalar = grayscale) is interpreted as the normal component
of the displacement vector.

 The ray intersects the new geometry
 The normal is computed according to the new geometry

h
normal(h)

x

x

dh
+

h*=h+dh

x
n*=normal(h+dh)

88

Computer Graphics

Textures

 Result

89

Computer Graphics

Textures

 Problems
 The resolution of the texture is very often much greater than that of

the geometry (often discretized)
 Significant cost if we want to respect the texture's resolution - the

discretization of the geometry should be very fine

750 19000 76000 1265000

90

Computer Graphics

Textures

 Geometry modification
 Possibility 2 - We only change the calculation of

normals (called "bump mapping")
 Texture (scalar = grayscale) is interpreted as the normal component

of the displacement vector.
 The ray intersects the original geometry.
 The normal is calculated at each point as if we were dealing with the

new modified geometry

x

x

dh
+

h*=h

x
n*=normal(h+ndh)

h
n=normal(h)

91

Computer Graphics

Textures

 Calculate new normals

n=tu×tv

n*
=

∂h n
∥n∥

dh
∂ u

×

∂h n
∥n∥

dh
∂ v

t u=
∂ t
∂ u

t v=
∂ t
∂ v

n*
=n

hv tu×n −hut v×n

∥n∥
⋅k

can control the depth effect−1k1

hv=
∂ dh
∂ v

Blinn formula

hu=
∂ dh
∂ u

92

Computer Graphics

Textures

 Result

93

Computer Graphics

Textures

 Comparison

94

Computer Graphics

Textures

 Geometry modification
 Possibility 3 - Using a normal map

 The texture is directly interpreted as the normal to the surface
(texture with two component = colors)

 The ray intersects the original geometry.
 The normal for each point is obtained by the texture

h

x

x

dn
+

h*=h

x n*=dn

95

Computer Graphics

Textures
 How are normal maps created ?

 1 –accurate model of the geometry

 2 – Calculation of rendering such
that :

- The red channel is the x value
of the normal (between -1 and 1)

- The green channel is the y value
of the normal (between -1 and 1)

- The blue channel is the z value
of the normal (between 0 and 1 !)

- Additional constraint :
We always have

 The implementation of this scheme
depends on the sofware used ...
There are tutorials for Blender.

 Once the normal map is computed, one can
perform a rendering on a simplified geometry.

x2
 y2

z2
=1

96

Computer Graphics

Textures

 Result

97

Computer Graphics

Textures

 Shades on a sculpture

wikipedia

98

Computer Graphics

Textures

 Normal maps: a tool for generating realistic images
using a simplified geometry

 The overall shape of the object is approximated by a coarse mesh
 Details are approached at each point by the knowledge on the one

hand of the real normal, and on the other hand, of the color
(two textures)

 Differences with respect to technique 2?
 Accuracy: normals are accurate (close to the discretization)

In the other case (slide 89), they are evaluated from the displacement
map by differentiation. However, the relative error in the derivative is
MUCH greater than that of the original variable.
It is therefore much better to store it directly !

99

Computer Graphics

Textures

 (Very) realistic rendering

Wan-Chun Ma Tim Hawkins Pieter Peers Charles-Felix Chabert Malte Weiss Paul Debevec
University of Southern California Institute for Creative Technologies

file:///media/bechet/scratch/bechet/boulot/scratch/bechet/boulot/cours/cours_liege/infographie/cours5/EGSR2007_SGI_Hires.mp4

