Computer Graphics

Course outline

- Introduction
- Images and display techniques
- Bases
- Gamma correction
- Aliasing and techniques to remedy
- Storage

Computer Graphics

Course outline

- 3D Perspective \& 2D / 3D transformations
- Go from a 3D space to a 2D display device
- Two paradigms for image synthesis
- Representation of curves and surfaces
- Splines \& co.
- Meshes
- Realistic rendering by ray tracing
- Concepts and theoretical bases

- LIÈGE

 Computer Graphics

 Computer Graphics}

Course outline

- Introduction
- Images and display techniques
- Bases
- Gamma correction
- Aliasing and techniques to remedy
- Storage

Computer Graphics

Course outline

- Lighting
- Law of reflexion, Textures
- Colorimetry
- Color space
- Metamerism
- Graphic pipeline and OpenGL
- Primitives
- Discretization (Rasterization)
- Hidden faces
- Animations?

- LIÈGE

 Computer Graphics

 Computer Graphics} université

Ray tracing

- Basic ray tracing
- One ray by pixel
- One shadow ray by point source of light
- One reflected ray, possibly a refracted ray, by intersection

Computer Graphics

Ray tracing

- Discontinuous appearance
- Perfectly clear silhouette and infinite field depth (clear image from 0 to infinite)
- Cause : the camera's pupil is like a pinhole
- Sharp shadows
- Cause : pointwise sources of light
- Perfectly clear mirror reflections
- Cause : infinitely smooth surfaces
- Presence of aliasing
- Cause : from a pixel to another, abrupt changes in brightness
- Aliased objects

Computer Graphics

Ray tracing

- Modeling imperfections is difficult !
- Diffuse shadows
- Depth of field
- Partially diffuse reflections
- Imperfect specular surfaces

Computer Graphics

Ray tracing

- Antialiasing
- Oversampling : for each pixel, take the average of several rays slightly shifted (5, 8 or $16 \ldots$)
- Increases rendering time

Computer Graphics

Ray tracing

1 deterministic sample

Computer Graphics

Ray tracing

1 random sample

Oversampling on 10 samples $_{10}$

Computer Graphics

Ray tracing

Oversampling on 10 samples

Oversampling on 100 samples,

Computer Graphics

Ray tracing

- Diffuse samples vs sharp shadows

- LIÈGE

 Computer Graphics

 Computer Graphics} université

Ray tracing

- Diffuse shadows vs sharp shadows
- Apparent diameter of the sun (and of the moon) : $\alpha=0.53^{\circ}$
a

Computer Graphics

Lancer de rayon

- Diffuse shadows

For each point, calculate several shading rays

- Add the contributions from the source only for rays not intersecting the object
- Amounts to decompose the light source into several, slightly offsetted in space, pointwise light sources of lower intensity

Computer Graphics

Ray tracing

- Two approaches
- Place additional light sources and perform rendering
- Problem : it takes a lot of such sources to achieve a realistic result
- The sources are positioned once and for all ...
- Use a sampling technique ...
- ... such that for each point, the fraction of light source not hidden by objects is approximately calculated by evaluating the following integral :

Computer Graphics

Ray tracing

- Monte Carlo integration
- One wishes to compute approximately $\iint_{\Omega} f(\eta) d \eta$
- We set

$$
\iint_{\Omega} f(\eta) d \eta \approx \frac{1}{N \operatorname{meas}(\Omega)} \sum_{i=1}^{N} f\left(\eta_{i}\right) \quad \operatorname{meas}(\Omega)=\frac{4}{\pi}
$$

- We choose the points η_{i} in a pseudorandom way (in a canonical setting)
- For each η_{i} we verify that we are in Ω, and if this is the cas, we verify that the source is visible, If these conditions are met it returns 1 , otherwise 0 .
- The factor meas (Ω) is calculated so as to obtain 1 if the light source is totally visible.

Computer Graphics

Ray tracing

- Characteristics of the Monte Carlo integration
- No regular grid
- If, for N points, the result is not accurate enough, it is easy to use 2 N points without losing the calculations already made
- Convergence rate
- Random sequence: $\frac{1}{\sqrt{(N)}}$
- "Low variance" sequence (Quasi-Monte-Carlo): $\frac{1}{N}$ (in practice)

	d	Monte Carlo		$$	
-	1	$\cdots, 000$	C03162	0.90100	C0963'
	1	100,000	0.09316	0.90001	0.0912
	2	10,000	C01000	0.900°	0.09848
	5	10,000	C.01000	0.900°	0.628
	10	10, 1000	1. 0111000		4.92 th 5
	50	100, 000	C07316	0.90001	14626 E 48

Computer Graphics

Ray tracing

- Sequences used for the MC integration

Quasi-random low variance sequence obtained by clustering

Random sequence

Computer Graphics

Ray tracing

40 fixed sources $\mathrm{I}_{\mathrm{i}}=\mathrm{I} / 40$

Computer Graphics

Ray tracing

- Depth of field
- The camera lense, eye, etc. .. cannot produce a sharp image from 0 to infinity.
- Geometrically, only objects on a given plane are sharp.
- Important concept!
- Qualitative distance information
- Bring what is important out (eg. portrait on blurred background)

Computer Graphics

Ray tracing

- Three techniques to account for the depth of field:
- By Post-processing
- Calculate the image without changing...
- At each point of the image, one has an idea of the depth (Z-buffer)
- With this z variable, blur the image starting with points far away and proceed toward the observer
- This is done is in Blender
- Not very accurate and frequently, artifacts are visible
- Successive rendering
- Several complete renderings with camera positions slightly shifted, which are then merged
- Similar to the calculation of shadows with n stationary sources - slow !
- Monte Carlo
- Each pixel is made with n separate calculations with slightly modified (quasi-random) positions of the camera
- Similar to the calculation of shadows (2nd method)

Computer Graphics

Ray tracing

Computer Graphics

Ray tracing

- Imperfect mirror reflections
- Due to surface irregularities
- The incident beam is reflected in a direction having a certain variance around the "mirror" configuration
- Sample randomly

- It is indeed a specular reflection
- Here, we want to see the image of other objects (Phong shading does not allows this)

Computer Graphics

Ray tracing

100 samples per point on the flat surface

Computer Graphics

Ray tracing

- Ray tracing with sampling
- Provides more realistic images
- Significant CPU cost ... but simple implementation
- Also called "distribution ray tracing"
- Each pixel is not the result of a single ray but instead the result of a distribution of rays
- Non-deterministic approach are used (quasi-random distribution) to avoid the Moiré pattern
- Statistical treatment is possible

Rendering equation

Computer Graphics

Rendering equation

- Until now, the procedure only takes into account the illumination of diffuse surfaces by direct light sources
- It solves very approximately what is called the "rendering equation"
- Light energy balance written for any point on the surface
$L_{o}(x, \omega, \lambda)=L_{e}(x, \omega, \lambda)+\int_{\Omega} L_{i}\left(x, \omega^{\prime}, \lambda\right)\left(\omega^{\prime} \cdot n\right) f_{r}\left(x, \omega^{\prime}, \omega, \lambda\right) d \omega^{\prime}$
- $L_{o}(x, \omega, \lambda)=$ light leaving the point
- $L_{e}(x, \omega, \lambda)=$ emitted light
$\mathrm{sr}^{-1} \quad-L_{i}(x, \omega, \lambda)=$ incident light
- $f_{r}\left(x, \omega^{\prime}, \omega, \lambda\right)=$ function of bidirectional spectral reflectance (« BRDF »)
- $\omega \cdot n \quad$ Attenuation factor related to the angle of incidence

LIÈGE

 Computer Graphics

 Computer Graphics} université

Rendering equation

- Expression of the rendering equation as a function of infinitesimal surface elements

$$
\begin{aligned}
L(x, \omega, \lambda)=L_{e}(x, \omega, \lambda)+\int_{\Omega} f_{r}\left(x, \omega^{\prime}, \omega, \lambda\right) L\left(x, \omega^{\prime}, \lambda\right)\left(\omega^{\prime} \cdot n\right) d \omega^{\prime} \\
\left(\omega^{\prime} \cdot n\right) d \omega^{\prime}=\cos \theta d \omega^{\prime}
\end{aligned}
$$

$$
L(x, \omega, \lambda)=L_{e}(x, \omega, \lambda)+\int_{S} f_{r}\left(x, \omega^{\prime}, \omega, \lambda\right) L\left(x^{\prime}, \omega^{\prime}, \lambda\right) G\left(x, x^{\prime}\right) d A^{\prime}\left(x^{\prime}\right)
$$

$$
\begin{aligned}
& G\left(x, x^{\prime}\right)=\frac{\cos \theta \cos \theta^{\prime}}{\left\|x-x^{\prime}\right\|^{2}} V\left(x, x^{\prime}\right) \\
& V\left(x, x^{\prime}\right)= \begin{cases}1 & \text { if visible } \\
0 & \text { if not visible }\end{cases}
\end{aligned}
$$

Computer Graphics

Rendering equation

- How to solve?
- Finite element method (radiosity)
- Mesh surfaces
- Approximation of the radiosity on each element
- Solving a linear system with N unknowns
- Restricted to a simple form of diffuse reflection models
- Stochastic methods
- Based on ray tracing
- Takes the conservation of energy into account
- Based on the calculations of probabilistic paths from the light source to the observer
- More varied physical models

Computer Graphics

Rendering equation

- Stochastic methods
- Metropolis Light Transport : an efficient method
- Solves the rendering equation in an unbiased way
- Simple implementation, good convergence properties
- Cf article of 1997:
E. Veach and L.J. Guibas, Metropolis Light Transport. In SIGGRAPH' 97: Proceedings of the $24^{\text {th }}$ Annual Conference on Computer Graphics and Interactive Techniques, 1997, pp. 65-76.
- An addition to Blender allows you to use this method cf website www.luxrender.net
- Allows the calculation of global illumination for 'difficult' scenes
- ex. dark room next to a bright room separated by a door slightly ajar

Computer Graphics

Rendering equation

- LIÈGE université

 Computer Graphics

 Computer Graphics}

Radiosity

- Finite element method (radiosity method)
- Assume all surfaces are discretized in n patchs P_{i}. Each patch P_{i} has an aera A_{i}, an orientation n_{i}, a radiosity B_{i}, \ldots

Computer Graphics

Radiosity

- Radiosity equation
$L(x, \omega, \lambda)=L_{e}(x, \omega, \lambda)+\int f_{r}\left(x, \omega^{\prime}, \omega, \lambda\right) L\left(x^{\prime}, \omega^{\prime}, \lambda\right) G\left(x, x^{\prime}\right) d A^{\prime}\left(x^{\prime}\right)$
- We assume a LLambertian reflection

There is therefore independence from the orientation ω
$L(x, \omega, \lambda)=L(x, \lambda) \quad L_{e}(x, \omega, \lambda)=L_{e}(x, \lambda)$

- We can therefore integrate the radiance (luminance) in any direction (hemisphere) : radiosity is obtained
$B(x, \lambda)=\int_{\Omega} L(x, \lambda) \cos \theta d \theta=\pi L(x, \lambda)$
- Similarly with the reflectivity:

$$
\begin{gathered}
f_{r}\left(x, \omega^{\prime}, \omega, \lambda\right)=f_{r}(x, \lambda) \\
R(x, \lambda)=\int_{\Omega} f_{r}(x, \lambda) \cos \theta d \theta=\pi f_{r}(x, \lambda)
\end{gathered}
$$

Computer Graphics

Radiosity

$$
L(x, \omega, \lambda)=L_{e}(x, \omega, \lambda)+\int_{S} f_{r}\left(x, \omega^{\prime}, \omega, \lambda\right) L\left(x^{\prime}, \omega^{\prime}, \lambda\right) G\left(x, x^{\prime}\right) d A^{\prime}\left(x^{\prime}\right)
$$

- We finally obtain (at each point x):

$$
\begin{gathered}
B(x)=B_{e}(x)+R(x) \int_{S} B\left(x^{\prime}\right) F\left(x, x^{\prime}\right) d A^{\prime}\left(x^{\prime}\right) \\
F\left(x, x^{\prime}\right)=\frac{G\left(x, x^{\prime}\right)}{\pi}
\end{gathered}
$$

- F is a shape factor : percentage of light leaving $d A^{\prime}$ coming on $d A$.

Computer Graphics

Radiosity

- Radiosity equation

$$
B(x)=B_{e}(x)+R(x) \int_{S} B\left(x^{\prime}\right) F\left(x, x^{\prime}\right) d A^{\prime}\left(x^{\prime}\right)
$$

- Integral equation of the second kind

$$
f(x)=g(x)+\int k\left(x, x^{\prime}\right) f\left(x^{\prime}\right) d x^{\prime}
$$

Computer Graphics

Radiosity

- Solving of radiosity equation: space discretization
- No need for a conforming mesh
- Variable size

Computer Graphics

Radiosity

- Solving of radiosity equation: space discretization

$$
B(x)=B_{e}(x)+R(x) \int_{S} B\left(x^{\prime}\right) F\left(x, x^{\prime}\right) d A^{\prime}\left(x^{\prime}\right)
$$

- It will be assumed constant variable on patch P_{i}

$$
\begin{aligned}
& B(x)=\sum_{i} B_{i} N_{i}(x) \\
& B_{e}(x)=\sum_{i} E_{i} N_{i}(x) \\
& R(x)=\sum_{i} R_{i} N_{i}(x)
\end{aligned}
$$

- The shape functions N_{i} are equal to 1 on the patch P_{i} and 0 everywhere else...

- LIÈGE université

 Computer Graphics

 Computer Graphics}

Radiosity

- Conversion towards a discrete linear system...

$$
\begin{gathered}
B(x)=B_{e}(x)+R(x) \int_{S} \sum_{j} B_{j} N_{j}\left(x^{\prime}\right) F\left(x, x^{\prime}\right) d A^{\prime} \\
\sum_{i} B_{i} N_{i}(x)=\sum_{i} E_{i} N_{i}(x)+\sum_{i} R_{i} N_{i}(x) B_{j}\left[\sum_{j} \int_{S} N_{j}\left(x^{\prime}\right) F\left(x, x^{\prime}\right) d A^{\prime}\right]
\end{gathered}
$$

- This equation is satisfied for each point x. So we can integrate on each patch...

$$
\begin{aligned}
& \int_{S}\left(\sum_{i} B_{i} N_{i}(x)\right) d A= \\
& \quad \int_{S}\left(\sum_{i} E_{i} N_{i}(x)+\sum_{i} R_{i} N_{i}(x) B_{j}\left[\sum_{j} \int_{S} N_{j}\left(x^{\prime}\right) F\left(x, x^{\prime}\right) d A^{\prime}\right]\right) d A \\
& \xrightarrow{\longrightarrow} B_{i} A_{i}=E_{i} A_{i}+R_{i} \sum_{j} B_{j} \iint_{S^{2}} F\left(x, x^{\prime}\right) N_{i}(x) N_{j}\left(x^{\prime}\right) d A d A^{\prime}
\end{aligned}
$$

Radiosity

- We have

$$
F\left(x, x^{\prime}\right)=\frac{\cos \theta \cos \theta^{\prime}}{\pi\left\|x-x^{\prime}\right\|^{2}} V\left(x, x^{\prime}\right)
$$

- We set:

$$
\begin{aligned}
& T_{i j}=T_{j i}=\int_{A_{i}} \int_{A_{j}} \frac{\cos \theta \cos \theta^{\prime}}{\pi\left\|x-x^{\prime}\right\|^{2}} V\left(x, x^{\prime}\right) d A d A^{\prime} \\
& T_{i j}=A_{i} F_{i j}
\end{aligned}
$$

- Reciprocity :

$$
T_{i j}=A_{i} F_{i j} \quad T_{j i}=A_{j} F_{j i} \longrightarrow A_{j} F_{j i}=A_{i} F_{i j}
$$

- Unity sum : $\quad \sum_{j} F_{i j}=\sum_{i} F_{j i}=1$

Computer Graphics

Radiosity

- Finally,

$$
B_{i} A_{i}=E_{i} A_{i}+R_{i} \sum_{j} B_{j} A_{j} F_{j i}
$$

- Use reciprocity ...

$$
A_{j} F_{j i}=A_{i} F_{i j}
$$

$$
B_{i}=E_{i}+R_{i} \sum_{j} B_{j} F_{i j}
$$

- Linear system of radiosity

$$
\left(\begin{array}{cccc}
1-R_{1} F_{11} & -R_{1} F_{12} & \cdots & -R_{1} F_{1 n} \\
-R_{2} F_{21} & 1-R_{2} F_{22} & \cdots & -R_{2} F_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-R_{n} F_{n 1} & -R_{n} F_{n 2} & \cdots & 1-R_{n} F_{n n}
\end{array}\right)\left(\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right)=\left(\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right) \quad(I-K) B=E
$$

Computer Graphics

Radiosity

- It remains to calculate $F_{i j}$ and solve the system.
- For a scene, it is done once, whatever the viewpoint
- Calculation of $F_{i j}$ (This is the most expensive operation!)
- Purely geometrical
- There are n^{2}
- Many vanish :
- Mutually hidden patches
- Incompatible orientation
- $F_{i i}$ terms if the patches are plane

Computer Graphics

Radiosity

- Calculation of Fij
- $T_{i j}=A_{i} F_{i j}$

$$
T_{i j}=\int_{A_{i}} \int_{A_{j}} \frac{\cos \theta \cos \theta^{\prime}}{\pi\left\|x-x^{\prime}\right\|^{2}} V\left(x, x^{\prime}\right) d A d A^{\prime}
$$

- Brute force: numerical integration for each pair of patches Pi - Pj
- One can use a Gaussian quadrature. \int^{1}

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

- If the patches are distant, the term is calculated with 1 point !

n	$\pm \xi_{i}$	W_{i}
1	0.000000000000000	2.000000000000000
2	0.577350269189626	1.000000000000000
3	0.000000000000000	0.888888888888889
	0.774596669241483	0.555555555555556
4	0.339981043584856	0.652145154862546
	0.861136311594053	0.347854845137454
5	0.000000000000000	0.568888888888889
	0.538469310105683	0.478628670499366
	0.906179845938664	0.236926885056189
6	0.238619186083197	0.467913934572691
	0.661209386466265	0.360761573048142
	0.932469514203152	0.171324492379170

Computer Graphics

Radiosity

- Gauss points for the triangle
$\int_{T} f(x, y) d x d y \approx A \sum_{i=1}^{n} w_{i} f\left(x_{i}, y_{i}\right)$

n	$11:$	ζ	C_{2}, C_{3}	M	p
1	1.000000000000000	0.3333333323333333	0.333333333333333		1
			0.333333333333333	1	
3	0.3333333333333333	0.6666666666666667	0.1666666666660667		2
			0.1660666666606667	3	
4	-0.562500000000000	0.3333333333333333	0.3333333333333333		3
			0.3333333333333333	1	
	0.520833333333333	0.6000000000000000	0.200000000000000		
			0.2000000000000000	3	
6	0.109951743655322	0.816847572980459	0.091576213509771		4
			0.091576213509771	3	
	0.223381589678011	0.108103018168070	0.445948490915965		
			0.445948490915965	3	
7	0.2250000000000000	0.3333332333333333	0.3333333333333333		5
			0.3333333333333333	1	
	0.125939180544827	0.797426985353087	0.101286507323456		
			0.101286507323456	3	
	0.132394152788506	0.059715871789770	0.470142064105115		
			0.470142064105115	3	
12	0050844906370207	0.873821971016996	0.063089014491502		6
			0.063089014491502	3	
	0.116786275726379	0.501426509658179	0.249286745170910		
			0.249286745170910	3	
	0.082851075618374	0.636502499121399	0.310352451033785		
			0.053145049844816	6	
13	-0.149570044467670	0.333333333333333	0.3333333333333333		7
			0.3333333333333333	1	
	0.175615257433204	0.479308067841923	0.260345966079038		
			0.260345966079038	3	
	0.053347235608839	0.869739794195368	0.065130102902216		
			0.065130102902216		
	0.077113760890257	0.638444188569809	0.312865496004875	43	3
			0.048690315425316	6	

Computer Graphics

Radiosity

- There are other methods:
- Projection of patches Pj on a "hemicube" centered on the patch Pi
- The calculation of Fij is reduced to the calculation of the form factor between patch Pi and the projection of Pj on the hemicube.
- The hemicube is discretized: the projection is a collection of squares whose contribution to Fij is simple
cf. «Computer Graphics : Theory into practice, Jeffrey McConnell, Jones \& Bartlett ed. » for more details. université

Computer Graphics

Radiosity

- Solving of the linear system
- Iterative by Gauss-Seidel
- Direct methods (LU or gaussian pivoting) usually too slow.
- We do not seek high accuracy...

$$
\left(\begin{array}{cccc}
1-R_{1} F_{11} & -R_{1} F_{12} & \cdots & -R_{1} F_{1 n} \\
-R_{2} F_{21} & 1-R_{2} F_{22} & \cdots & -R_{2} F_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-R_{n} F_{n 1} & -R_{n} F_{n 2} & \cdots & 1-R_{n} F_{n n}
\end{array}\right)\left(\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right)=\left(\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right) \quad(I-K) B=E
$$

Radiosity

- Jacobi iterations

$$
\begin{aligned}
& (I-K) B=E \\
& B^{(k)}=K B^{(k-1)}+E
\end{aligned}
$$

- For $\mathrm{i}=1$ ton $\quad B_{i}^{(k)}=E_{i}+R_{i} \sum_{j=1}^{n} F_{i j} B_{j}^{(k-1)}$
- We initialize with $B^{(0)}=E$
- Slow convergence (but easily scalable)
- Gauss-Seidel iterations
- For i $=1$ to n $\quad B_{i}^{(k)}=E_{i}+R_{i}\left(\sum_{j=1}^{i-1} F_{i j} B_{j}^{(k)}+\sum_{j=i}^{n} F_{i j} B_{j}^{(k-1)}\right)$
- Same initialisation.
- Faster convergence than the Jacobi method (but parallelization is more difficult)

Computer Graphics

Radiosity

- After the radiosity calculation are done, display the resulting radiosity
- The value of radiosity of each patch is simply used as a texture, changing emissivity of the corresponding surface.
- The construction of the image is done by conventional raytracing
- Note: Initialization of emitting surface can be done by applying the algorithm of ray-tracing with "classical" (point) sources
- The radiosity calculation does not depend on the position of the viewer
- The result of the calculation can be used, also for the real-time rendering (OpenGL or others)

Computer Graphics

Radiosity

- Radiosity calculation: evolution of convergence

- Issues with radiosity simulations
- Difficulty with sharp shadows
- Result depends on the discretization!
- High memory use / slow calculations
- Limitations to diffuse surfaces

Computer Graphics

Radiosity

- Cornell box (1984-1985)

Measured radiosity (CCD image)

Calculated radiosity

- LIÈGE

 Computer Graphics

 Computer Graphics} université

Textures

Computer Graphics

Textures

- The materials we see in everyday life have variable surface properties
- Example: wood
- Uniform at a very large scale, but strongly variable at small scale
- Color varies
- Specularity
- Direction of anisotropy
- Etc...

Computer Graphics

Textures

- Example 2 : checkerboard
- Repeated geometry
- Color changes
- Handmade artifact...

- LIÈGE

Computer Graphics

Textures

- To design a texture:
- Solution 1
- Model each area as separate objects, and assign a specific material
- Works for simple textures (checkerboards)
- Difficult to realize continuous variations such as for wood
- Solution 2
- Define a function that assigns to each point on the surface a different characteristic
- An artifact's surface is bi-dimensional (u,v)
- One can thus apply an image onto the geometry of the artifcat
- Often, simple bitmaps are used

Computer Graphics

Textures

Textures can account for variations of the surface's properties

- This is a function (often a scalar) of space coordinates on a surface
- Affects the color, reflection model parameters (phong p. ex.)
- May also affect the geometry: the surface itself is disturbed or the calculation of normal is disturbed
- Allows very fine modeling even with a coarse geometric model
- Instead of having a very fine geometric model, a kind of image is applied on the surface at each point defining the precise characteristics.

- LIÈGE

 Computer Graphics

 Computer Graphics}

Textures

- Texture = function of (u, v)
- Problems is the application of textures: where is the image projected onto the surface defined in (u, v)?
- Only easy for rectangles (direct mapping)
- Otherwise, transformations are needed (more interesting!)
- We're talking about flat textures, but there are also 3D textures
- Function of (u,v,w)
- This texture is assessed only on the surface of the volume (special case: transparent volumes)
- Interesting for solid materials
- Often this is defined analytically (or via a procedural definition)
- Example : rendering of a block of carved wood.

Computer Graphics

Textures

- Texture coordinates
- How to apply the texture?
- What is needed is a function f that maps (u, v) to (x, y, z)
- This looks like a parametric surface definition
- In fact, if the surface is parametrically defined, we have this function f naturally
- When calculating the intersection of a ray with the surface, the couple (u, v) is immediately obtained.

Tridimensionnal surface S

Computer Graphics

Textures

- Texture coordinates
- Parameterization (u, v) do not generally preseve measures of angles, lengths, or areas.
- We would like the placement of the texture to be controlled so that its appearance (in (x, y, z) coordinates) is suitable.
- In the following, let's consider an application f : $(u, v) \rightarrow(x, y, z)$.
- This function defines a surface
- In particular, it allows to apply an image on a surface

Computer Graphics

Textures

A surface is expressed in this form:

$$
\vec{P}(u, v)=\left\{\begin{array}{l}
x=f(u, v) \\
y=g(u, v) \\
z=h(u, v)
\end{array}\right.
$$

u, v are two real parameters

- All points on the surface are obtained by varying u and v.

- LIÈGE

 Computer Graphics

 Computer Graphics} université

Textures

We can define a curve on the surface:

Parametric space
Ambient space

$$
\begin{aligned}
& \vec{\Gamma}^{u v}(t):\left\{\begin{array}{l}
u=u(t) \\
v=v(t)
\end{array} \rightarrow \vec{P}(u, v):\left\{\begin{array}{l}
x=f(u, v) \\
y=g(u, v) \\
z=h(u, v)
\end{array}\right.\right. \\
& \vec{\Gamma}(t):\left\{\begin{array}{l}
x=f(u(t), v(t)) \\
y=g(u(t), v(t)) \\
z=h(u(t), v(t))
\end{array}\right.
\end{aligned}
$$

Computer Graphics

Textures

Regularity and continuity of the parameterization

- A parametric surface is of class C_{k} if the application $P(u, v)$ is of class C_{k}. (i.e. k-times differentiable)
- A parameterization is regular if and only if
$\frac{\partial \vec{P}}{\partial u}\left(u_{0}, v_{0}\right) \times \frac{\partial \vec{P}}{\partial v}\left(u_{0}, v_{0}\right) \neq \overrightarrow{0} \quad \forall\left(u_{0}, v_{0}\right) \in D \subset \mathbb{R}^{2}$
- The points that are not satisfying this are singular points.
- Equivalent- C_{k} parametrizations are regular ont the same domain... université

Computer Graphics

Textures

Differential geometry for parametric surfaces

- Position $P: \quad \vec{P}(u, v)=\left[\begin{array}{l}x(u, v) \\ y(u, v) \\ z(u, v)\end{array}\right] \quad \vec{P}^{\mathrm{u}}=\frac{\partial \vec{P}}{\partial u} \quad \vec{P}^{\mathrm{uv}}=\frac{\partial^{2} \vec{P}}{\partial u \partial v} \cdots$
- Unit tangent vectors T^{u} and T^{v} :
$\vec{T}^{\mathrm{u}}(u, v)=\frac{\partial P}{\partial u} \cdot\left|\frac{\partial P}{\partial u}\right|^{-1}=\frac{P^{\mathrm{u}}}{\left|P^{\mathrm{u}}\right|} \quad \vec{T}^{\mathrm{v}}(u, v)=\frac{\partial P}{\partial v} \cdot\left|\frac{\partial P}{\partial v}\right|^{-1}=\frac{P^{\mathrm{v}}}{\left|P^{\mathrm{v}}\right|}$
- These vectors are not always perpendicular
- Tangent plane (parametric form)

$$
\begin{aligned}
& \overrightarrow{P t}_{\left(u_{0}, v_{0}\right)}(a, b)=\vec{P}\left(u_{0}, v_{0}\right)+a \cdot \vec{T}^{\mathrm{u}}\left(u_{0}, v_{0}\right)+b \cdot \vec{T}^{\mathrm{v}}\left(u_{0}, v_{0}\right) \\
& (a, b) \in \mathbb{R}^{2}
\end{aligned}
$$

- LIÈGE

 Computer Graphics

 Computer Graphics} université

Textures

- Normal vector N :
$N(u, v)=\frac{\operatorname{Norm}(u, v)}{|\operatorname{Norm}(u, v)|}$ with $\operatorname{Norm}(u, v)=T^{\mathrm{u}} \times T^{\mathrm{v}}$ or $P^{\mathrm{u}} \times P^{\mathrm{v}}$

$$
T^{\mathrm{V}}
$$

- LIÈGE
 Computer Graphics

Textures

- Area:

$$
\begin{aligned}
& A=\iint_{S} d S \\
& d S=\left|d u \cdot P^{\mathrm{u}} \times d v \cdot P^{\mathrm{v}}\right|=\left|P^{\mathrm{u}} \times P^{\mathrm{v}}\right| d u d v
\end{aligned}
$$

$1^{\text {st }}$ fundamental form

- Other notation of a the area

$$
\begin{aligned}
& |\vec{a} \times \vec{b}|^{2}=(\vec{a} \cdot \vec{a}) \cdot(\vec{b} \cdot \vec{b})-(\vec{a} \cdot \vec{b})^{2} \quad \text { Lagrange's identity } \\
& d S=\sqrt{\left(e g-f^{2}\right)} d u d v \text { with } e=P^{u} \cdot P^{u}, f=P^{u} \cdot P^{v}, g=P^{v} \cdot P^{v} \\
& A=\iint_{D} \sqrt{\left(e g-f^{2}\right)} d u d v
\end{aligned}
$$

- LIEGE
 Computer Graphics

Textures

- Calculate the length of a curve on a surface

$$
\vec{P}(u, v): \begin{cases}x=f(u, v) & P^{\mathrm{u}}=\frac{\partial P(u, v)}{\partial u} \\ y=g(u, v) \\ z=h(u, v) & P^{\mathrm{v}}=\frac{\partial P(u, v)}{\partial v}\end{cases}
$$

$$
\vec{\Gamma}^{u v}(t):\left\{\begin{array}{l}
u=u(t) \\
v=v(t)
\end{array} \vec{\Gamma}(t):\left\{\begin{array}{l}
x=f(u(t), v(t)) \\
y=g(u(t), v(t)) \\
z=h(u(t), v(t))
\end{array} \quad \Gamma^{\prime}=\frac{d P(u(t), v(t))}{d t}\right.\right.
$$

$$
d \Gamma^{u v}(t)=\binom{d u}{d v}=\binom{u^{\prime} d t}{v^{\prime} d t}
$$

Computer Graphics

Textures

$$
L=\int_{a}^{b}\left|\overrightarrow{\Gamma^{\prime}}(t)\right| d t=\int_{a}^{b} \sqrt{\left|\vec{\Gamma}^{\prime}(t)\right|^{2}} d t
$$

- Derivation in series:
$\Gamma^{\prime}(t)=u^{\prime}(t) P^{u}(u(t), v(t))+v^{\prime}(t) P^{v}(u(t), v(t))$
$\left|\Gamma^{\prime}(t)\right|^{2}=e u u^{\prime}(t)^{2}+2 f u^{\prime}(t) v^{\prime}(t)+g v^{\prime}(t)^{2}$
with $e=P_{u} \cdot P_{u}, f=P_{u} \cdot P_{v}, g=P_{v} \cdot P_{v}$

Textures

- If we set
$d s=\sqrt{e u^{\prime}(t)^{2}+2 f u^{\prime}(t) v^{\prime}(t)+g v^{\prime}(t)^{2}} d t$
which amounts to $d s=\sqrt{e d u^{2}+2 f d u d v+g d v^{2}}$
(we have $L=\int_{s(a)}^{s(b)} d s=s(b)-s(a)$)
, it is in fact a quadratic form:

$$
\begin{aligned}
& e u^{\prime}(t)^{2}+2 f u^{\prime}(t) v^{\prime}(t)+g v^{\prime}(t)^{2}=\left(u^{\prime}(t) \quad v^{\prime}(t)\right)\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)\binom{u^{\prime}(t)}{v^{\prime}(t)} \\
& L=\int_{a}^{b} \sqrt{\left(\begin{array}{ll}
u^{\prime}(t) & \left.v^{\prime}(t)\right)\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)\binom{u^{\prime}(t)}{v^{\prime}(t)}
\end{array} d t\right.} . l
\end{aligned}
$$

- LIÈGE
 Computer Graphics

 université
Textures

- Angle between two curves ...

$$
\Gamma_{1}^{\prime}(t) \cdot \Gamma_{2}^{\prime}(t)=\left|\Gamma_{1}^{\prime}(t) \| \Gamma_{2}^{\prime}(t)\right| \cos \alpha=\left(\begin{array}{ll}
u_{1}^{\prime}(t) & v_{1}^{\prime}(t)
\end{array}\right)\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)\binom{u_{2}^{\prime}(t)}{v_{2}^{\prime}(t)}
$$

- LIÈGE

 Computer Graphics

 Computer Graphics} université

Textures

- The $1^{\text {rst }}$ fundamental form is the application

$$
\phi_{1}\left(d \Gamma_{1}^{u v}, d \Gamma_{2}^{u v}\right)=\left(\begin{array}{ll}
d u_{1} & d v_{1}
\end{array}\right)\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)\binom{d u_{2}}{d v_{2}}=\left(\begin{array}{ll}
d u_{1} & d v_{1}
\end{array}\right) \mathrm{M}_{1}\binom{d u_{2}}{d v_{2}}
$$

with $e=P_{u} \cdot P_{u}, f=P_{u} \cdot P_{v}, g=P_{v} \cdot P_{v}$

- It is a symmetric bilinear form that can "measure" actual distances from variations in the parametric space ...
- The M_{1} matrix is a representation of the metric tensor.
- M is also related to the Jacobian matrix $\quad J=\left(\begin{array}{ll}\partial x / \partial u & \partial x / \partial v \\ \text { of the transformation }(u, v) \rightarrow(x, y, z)\left(\text { It is } J^{\mathrm{T}} J\right) .\end{array}\right.$
$L=\int_{a}^{b} \sqrt{\phi_{1}\left(d \Gamma^{u v}, d \Gamma^{u v}\right)} d t \quad \cos \alpha=\frac{\phi_{1}\left(d \Gamma_{1}^{u v}, d \Gamma_{2}^{u v}\right)}{\sqrt{\phi_{1}\left(d \Gamma_{1}^{u v}, d \Gamma_{1}^{u v}\right) \phi_{1}\left(d \Gamma_{2}^{u v}\right.}}$
$A=\iint_{D} \sqrt{\operatorname{det} \mathrm{M}_{1}} d u d v \quad=\iint_{D} \operatorname{det} \mathrm{~J} d u d v$ under some conditions $)$

- LIÈGE

 Computer Graphics

 Computer Graphics}

Textures

- Back to our textures
- An image is to be applied on a curved surface
- If the coordinates u, v are used as texture coordinates, the areas are not generally preserved.
- Using the first fundamental form, we can compensate this by defining an alternative parametrization
- Example: a sphere

$$
P(u, v)=\left\{\begin{array}{l}
x(u, v)=r \cdot \cos u \cos v \\
y(u, v)=r \cdot \sin u \cdot \cos v \\
z(u, v)=r \cdot \sin v
\end{array}\right.
$$

$$
\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)
$$

$$
e=r^{2} \cdot\left(\sin ^{2} u \cos ^{2} v+\cos ^{2} u \cos ^{2} v\right)
$$

$$
f=r^{2} \cdot(\sin u \cos v \sin v \cos u-\sin u \cos v \sin v \cos u)=0
$$

$$
g=r^{2} \cdot\left(\cos ^{2} u \sin ^{2} v+\sin ^{2} u \sin ^{2} v+\cos ^{2} v\right)
$$

- LIÈGE

 Computer Graphics

 Computer Graphics}

Textures

- Back to our textures
- First fundamental form and the metric tensor

$$
\mathrm{M}_{1}=\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right) \begin{aligned}
& e=r^{2} \cdot\left(\sin ^{2} u \cos ^{2} v+\cos ^{2} u \cos ^{2} v\right)=r^{2} \cos ^{2} v \\
& f=r^{2} \cdot\left(\sin u \cos ^{v} v \sin v \cos u-\sin u \cos v \sin v \cos u\right)=0 \\
& g=r^{2} \cdot\left(\cos ^{2} u \sin ^{2} v+\sin ^{2} u \sin ^{2} v+\cos ^{2} v\right)=r^{2}
\end{aligned}
$$

- Area ratio as a function of the position

$$
\begin{aligned}
& d A=\sqrt{\operatorname{det} \mathrm{M}_{1}} d u d v \\
& \sqrt{\operatorname{det} \mathrm{M}_{1}}=\sqrt{e \cdot g}=r^{2}|\cos v|
\end{aligned}
$$

- Ratio of the distances in function of the position (iso-u and iso-v)

$$
d L=\sqrt{\phi_{1}\left(d \Gamma^{u v}, d \Gamma^{u v}\right)}
$$

Computer Graphics

Textures

$$
d L=\sqrt{\phi_{1}\left(d \Gamma^{u v}, d \Gamma^{u v}\right)}=d t \sqrt{\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)\binom{1}{0}}
$$

$\sqrt{\left(\begin{array}{ll}1 & 0\end{array}\right)\left(\begin{array}{ll}e & f \\ f & g\end{array}\right)\binom{1}{0}}=\sqrt{e}=r|\cos v|$

- With $d \Gamma^{u v}=d t \cdot\binom{0}{1}$ (direction v)

$$
\sqrt{\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)\binom{0}{1}}=\sqrt{g}=r
$$

(independent of the position)

Computer Graphics

Textures

- An image to display is centered at $\left(\mathrm{u}_{0}, \mathrm{v}_{0}\right)$ on the sphere : how to prevent it from deforming too much?
- What is the connection that must be made between the texture coordinates (η, ξ) and the parameters (u, v) ?
- Suppose that (η, ξ) is aligned with (u, v)
- We want to keep the distances according to
 η and ξ.
- We set

$$
\begin{aligned}
& \Gamma^{1}:\binom{u=f_{1}\left(\eta^{*}\right)}{v} \\
& d \Gamma^{1}:\binom{\frac{\partial f_{1}\left(\eta^{*}\right)}{\partial \eta^{*}} d \eta^{*}}{0} \\
& \Gamma^{2}:\binom{u}{v=f_{2}\left(\xi^{*}\right)}
\end{aligned} d \Gamma^{2}:\binom{0}{\frac{\partial f_{2}\left(\xi^{*}\right)}{\partial \xi^{*}} d \xi^{*}} .
$$

Computer Graphics

Textures

- Calculate the actual distance along Γ^{1} : it must be equal to η

$$
\begin{aligned}
& L(\eta)=\int_{0}^{\eta} \sqrt{\phi_{1}\left(d \Gamma^{1}, d \Gamma^{1}\right)}=\eta \\
& \left.L(\eta)=\int_{0}^{\eta} \sqrt{\left(\frac{\partial f_{1}\left(\eta^{*}\right)}{\partial \eta^{*}} d \eta^{*}\right.} \begin{array}{l}
0
\end{array}\right) \cdot\left(\begin{array}{cc}
e & f \\
f & g
\end{array}\right)\binom{\left.\frac{\partial f_{1}\left(\eta^{*}\right)}{\partial \eta^{*}} d \eta^{*}\right)}{0} \\
& L(\eta)=\int_{0}^{\eta} \sqrt{e} \begin{array}{l}
\left(\frac{\partial f_{1}\left(\eta^{*}\right)}{\partial \eta^{*}}\right)^{2} \\
\eta^{*}
\end{array}=r \cos v\left[f_{1}(\eta)-f_{1}(0)\right] \\
& r \cos v\left[f_{1}(\eta)-f_{1}(0)\right]=\eta \\
& f_{1}(\eta)=\frac{\eta}{r \cos v}+f_{1}(0) \text { with } f_{1}(0)=u_{0}
\end{aligned}
$$

Computer Graphics

Textures

- Same along Γ^{2} : actual distance $=\xi$

$$
\begin{aligned}
& L(\xi)=\int_{0}^{\xi} \sqrt{\phi_{1}\left(d \Gamma^{2}, d \Gamma^{2}\right)}=\xi \\
& L(\xi)=\int_{0}^{\xi} \sqrt{g\left(\frac{\partial f_{2}\left(\xi^{*}\right)}{\partial \xi^{*}}\right)^{2}} d \xi^{*}=r\left[f_{2}(\xi)-f_{2}(0)\right] \\
& r\left[f_{2}(\xi)-f_{2}(0)\right]=\xi \\
& f_{2}(\xi)=\frac{\xi}{r}+f_{2}(0) \text { with } f_{2}(0)=v_{0}
\end{aligned}
$$ université

Computer Graphics

Textures

- Change of coordinates

$$
\begin{aligned}
& u=\frac{\eta}{r \cos v}+u_{0}=\frac{\eta}{r \cos \left(\frac{\xi}{r}+v_{0}\right)}+u_{0} \rightarrow \eta=\left(u-u_{0}\right) r \cos v \\
& v=\frac{\xi}{r}+v_{0} \rightarrow \xi=\left(v-v_{0}\right) r
\end{aligned}
$$

- Is the area preserved?

$$
d A=\sqrt{\operatorname{det} \mathrm{M}_{1}^{*}} d \eta d \xi
$$

- Yes if $\sqrt{\operatorname{det} \mathrm{M}_{1}^{*}}=1$

$$
M_{1}^{*}=\left(\begin{array}{ll}
e^{*} & f^{*} \\
f^{*} & g^{*}
\end{array}\right)
$$

$$
\text { with } e^{*}=P_{\eta} \cdot P_{\eta}, f^{*}=P_{\eta} \cdot P_{\xi}, g^{*}=P_{\xi} \cdot P_{\xi}
$$

Computer Graphics

Textures

- Computation of the terms of the metric tensor

$$
\begin{aligned}
& P(u, v)=\left\{\begin{array}{l}
x(u, v)=r \cdot \cos u \cos v \\
y(u, v)=r \cdot \sin u \cdot \cos v \\
z(u, v)=r \cdot \sin v
\end{array} \rightarrow P(\eta, \xi)=\left\{\begin{array}{l}
x=r \cdot \cos u(\eta, \xi) \cos v(\eta, \xi) \\
y=r \cdot \sin u(\eta, \xi) \cdot \cos v(\eta, \xi) \\
z=r \cdot \sin v(\eta, \xi)
\end{array}\right.\right. \\
& u(\eta, \xi)=\frac{\eta}{r \cos \left(\frac{\xi}{r}+v_{0}\right)}+u_{0} \quad v(\eta, \xi)=\frac{\xi}{r}+v_{0}
\end{aligned}
$$

$$
P_{\mathrm{n}}=r \cdot\left\{\begin{array}{c}
-\frac{\partial u}{\partial \eta} \sin u \cos v \\
\frac{\partial u}{\partial \eta} \cos u \cos v \\
0
\end{array} \quad P_{\xi}=r \cdot\left\{\begin{array}{c}
-\frac{\partial u}{\partial \xi} \sin u \cos v-\frac{\partial v}{\partial \eta} \cos u \sin v \\
\frac{\partial u}{\partial \xi} \cos u \cos v-\frac{\partial v}{\partial \eta} \sin u \sin v \\
-\frac{\partial v}{\partial \xi} \cos v
\end{array}\right.\right.
$$

Textures

$$
\begin{aligned}
& e^{*}=P_{n} \cdot P_{n}=r^{2}\left(\frac{\partial u}{\partial \eta}\right)^{2} \cos ^{2} v \\
& f^{*}=P_{\eta} \cdot P_{\xi}=r^{2} \frac{\partial u}{\partial \eta} \frac{\partial u}{\partial \xi} \cos ^{2} v \\
& g^{*}=P_{\xi} \cdot P_{\xi}=r^{2}\left(\left(\frac{\partial u}{\partial \xi}\right)^{2} \cos ^{2} v+1\right) \\
& \sqrt{\operatorname{det} \mathrm{M}_{1}^{*}}=\sqrt{e^{*} g^{*}-f^{* 2}}=r \frac{\partial u}{\partial \eta} \cos v \\
& \\
& =\frac{r}{r \cos \left(\frac{\xi}{r}+v_{0}\right)} \cos \left(\frac{\xi}{r}+v_{0}\right)=1!
\end{aligned}
$$

\rightarrow Preservation of the area (this is by chance)

Textures

- LIÈGE

 Computer Graphics

 Computer Graphics}

Textures

- Texture coordinates
- For non parametric surfaces
- Example : discretized surfaces (triangles)
- (u, v) is not obtained in the calculation of the intersection of a ray with the surface
- We must define the inverse operation $f: \phi: S \rightarrow D$
- For a point P, the texture is obtained at the position $\phi(P)$
- We must construct a plausible parameterization of the triangulated surface
- u, v must be stored at each vertex of the mesh

Dimensional texture in the domain D

Textures

- Construction of a parameterization of a triangulated surface (mesh)
- Possibility 1) : Projection of the mesh vertices on a topologically equivalent surface (ex. Plane, sphere ...)
- Knowing the projection, the surface's parameterization is directly associated it

- If the triangulation comes from a "complex" surface (e.g. Bezier type), this technique is used. The projection step is not necessary (the vertices are on the surface), it suffices to assign to each vertex the values of the parameter on the original surface. université

Computer Graphics

Textures

- Construction of a parameterization of a triangulated surface (mesh)
- Possibility 2) : "Flatten" the mesh and build parameterization Goal here: build a parameterization that respect some of the following qualities:
- Low distortion (angle conservations)
- Area ratios are roughly preserved
- Natural coordinates (in geodesic distances)
- Rather complex algorithms, solutions to the problem are quite recent
- Amounts to solve partial differential equations

Triangles in real space

Triangles in the parameteric space (here, conforming mapping)

Computer Graphics

Textures

Computer Graphics

Textures

- Texture coordinates
- For periodic textures
- The application $\phi: S \rightarrow D$ may be non bijective

Three-dimensional surface S
Dimensional texture in the domain D

- Example : brick wall, checkerboard, etc...
- But also pseudo-random textures - one should not see the periodicity but the base texture is set on a small area only.

LIĖGE

 Computer Graphics

 Computer Graphics} université

Textures

- Examples of applying textures
- Parametric surface: a sphere

$$
\binom{u}{v} \rightarrow\left(\begin{array}{c}
x=r \sin u \cos v \\
y=r \sin u \sin v \\
z=r \cos u
\end{array}\right)
$$

JPG image (projection called « Plate Carrée »)

Computer Graphics

Textures

- The application of texture here concerns the color (color defined by the used image)
- One can change the other parameters of the models of reflection
- Emissivity (light source)
- Specular
- etc...
- It can also affect the geometry
- Local modification of the surface shape
- Modification of the normal vectors (cf. Phong interpolation)

Textures

- Using a picture at night, changing the emissivity setting in addition to the color

Computer Graphics

Textures

- Geometry modification
- Possibility 1 - Simply moving the geometry
- Texture (scalar = grayscale) is interpreted as the normal component of the displacement vector.
- The ray intersects the new geometry
- The normal is computed according to the new geometry

LIÈGE université

Computer Graphics

Textures

- Result

Computer Graphics

Textures

- Problems
- The resolution of the texture is very often much greater than that of the geometry (often discretized)
- Significant cost if we want to respect the texture's resolution - the discretization of the geometry should be very fine

Computer Graphics

Textures

- Geometry modification
- Possibility 2 - We only change the calculation of normals (called "bump mapping")
- Texture (scalar = grayscale) is interpreted as the normal component of the displacement vector.
- The ray intersects the original geometry.
- The normal is calculated at each point as if we were dealing with the new modified geometry
 université

Computer Graphics

Textures

- Calculate new normals

$$
\begin{aligned}
& t_{u}=\frac{\partial t}{\partial u} \quad t_{v}=\frac{\partial t}{\partial v} \\
& n=t_{u} \times t_{v} \\
& n^{*}=\frac{\partial\left(h+\frac{n}{\|n\|} d h\right)}{\partial u} \times \frac{\partial\left(h+\frac{n}{\|n\|} d h\right)}{\partial v} \\
& n^{*}=n+\frac{h_{v}\left(t_{u} \times n\right)-h_{u}\left(t_{v} \times n\right)}{\|n\|}(\cdot k) \quad \begin{array}{l}
h_{u}=\frac{\partial d h}{\partial u} h_{v}=\frac{\partial d h}{\partial v} \\
\text { Blinn formula }
\end{array}
\end{aligned}
$$

LIĖGE université

Computer Graphics

Textures

- Result

Computer Graphics

Textures

- Comparison

Computer Graphics

Textures

- Geometry modification
- Possibility 3 - Using a normal map
- The texture is directly interpreted as the normal to the surface (texture with two component = colors)
- The ray intersects the original geometry.
- The normal for each point is obtained by the texture

Computer Graphics

Textures

- How are normal maps created ?
- 1 -accurate model of the geometry
- 2 - Calculation of rendering such that :
- The red channel is the x value of the normal (between -1 and 1)
- The green channel is the y value of the normal (between-1 and 1)
- The blue channel is the z value of the normal (between 0 and 1 !)
- Additional constraint :

We always have $x^{2}+y^{2}+z^{2}=1$

- The implementation of this scheme depends on the sofware used ... There are tutorials for Blender.
- Once the normal map is computed, one can perform a rendering on a simplified geometry.

Computer Graphics

Textures

- Result
 université

Computer Graphics

Textures

- Shades on a sculpture

original mesh 4 M triangles

simplified mesh 500 triangles

simplified mesh and normal mapping 500 triangles

- LIÈGE

 Computer Graphics

 Computer Graphics}

Textures

- Normal maps: a tool for generating realistic images using a simplified geometry
- The overall shape of the object is approximated by a coarse mesh
- Details are approached at each point by the knowledge on the one hand of the real normal, and on the other hand, of the color (two textures)
- Differences with respect to technique 2?
- Accuracy: normals are accurate (close to the discretization)

In the other case (slide 89), they are evaluated from the displacement map by differentiation. However, the relative error in the derivative is MUCH greater than that of the original variable. It is therefore much better to store it directly! université

Computer Graphics

Textures

- (Very) realistic rendering

Wan-Chun Ma Tim Hawkins Pieter Peers Charles-Felix Chabert Malte Weiss Paul Debevec University of Southern California Institute for Creative Technologies

