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Computer Graphics

Course outline

 Introduction 
 Images and display techniques

 Bases
 Gamma correction
 Aliasing and techniques to remedy
 Storage 
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Computer Graphics

Course outline

 3D Perspective & 2D / 3D transformations
 Go from a 3D space to a 2D display device

 Two paradigms for image synthesis
 Representation of curves and surfaces

 Splines & co.
 Meshes 

 Realistic rendering by ray tracing
 Concepts and theoretical bases
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Computer Graphics

Course outline

 Introduction 
 Images and display techniques

 Bases
 Gamma correction
 Aliasing and techniques to remedy
 Storage 
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Course outline

 Lighting
 Law of reflexion, Textures

 Colorimetry
 Color space
 Metamerism

 Graphic pipeline and OpenGL
 Primitives
 Discretization (Rasterization)
 Hidden faces

 Animations ?
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Ray tracing

 Basic ray tracing
 One ray by pixel
 One shadow ray by point source of light 
 One reflected ray, possibly a refracted ray, by 

intersection
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Ray tracing

 Discontinuous appearance
 Perfectly clear silhouette and infinite 

field depth (clear image from 0 to 
infinite)

 Cause : the camera’s pupil is like a 
pinhole

 Sharp shadows
 Cause : pointwise sources of light

 Perfectly clear mirror reflections
 Cause : infinitely smooth surfaces

 Presence of aliasing
 Cause : from a pixel to another, 

abrupt changes in brightness
 Aliased objects
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Ray tracing

 Modeling imperfections is difficult !
 Diffuse shadows
 Depth of field
 Partially diffuse reflections

 Imperfect specular surfaces
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Ray tracing

 Antialiasing
 Oversampling : for each 

pixel, take the average 
of several rays slightly 
shifted (5, 8 or 16 ...)

 Increases rendering time

 Randomize position to 
avoid any Moiré effect

<
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Ray tracing

1 deterministic sample
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Ray tracing

Oversampling on 10 samples

1 random sample
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Ray tracing

Oversampling on 100 samples

Oversampling on 10 samples
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Ray tracing

 Diffuse samples vs sharp shadows
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Ray tracing

 Diffuse shadows vs sharp shadows
 Apparent diameter of the sun (and of the moon) : a=0.53°
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Lancer de rayon

 Diffuse shadows

 Amounts to decompose the light source into several, slightly 
offsetted in space, pointwise light sources of lower intensity

For each point, calculate 
several shading rays

 Add the contributions from 
the source only for rays 
not intersecting the object
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Ray tracing

 Two approaches
 Place additional light sources and perform rendering

 Problem : it takes a lot of such sources to achieve a realistic result
 The sources are positioned once and for all ...

 Use a sampling technique ...
 … such that for each point, the fraction of light source not hidden by 

objects is approximately calculated by evaluating the following 
integral :

I=L∬


S  d 

S  =1

S  =0
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Ray tracing

 Monte Carlo integration
 One wishes to compute approximately 
 We set

 We choose the points     in a pseudo-
random way (in a canonical setting)

 For each h
i
 we verify that we are in W , and if

this is the cas, we verify that the source is visible,
If these conditions are met it returns 1, otherwise 0.

 The factor meas(W) is calculated so as to obtain 1 
if the light source is totally visible.
 

∬
W

f (h)d h≈
1

N meas(W)
∑
i=1

N

f (hi)

∬


f  d 

 i

meas (W)=
4
π
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Ray tracing

 Characteristics of the Monte Carlo integration 
 No regular grid
 If, for N points, the result is not accurate enough, it is easy to use 2N 

points without losing the calculations already made
 Convergence rate

 Random sequence: 
 "Low variance" sequence  (Quasi-Monte-Carlo):                  (in practice)

            (worste cas)

1

N  1
N

ln N d

N
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Ray tracing

 Sequences used for the MC integration

Random sequenceQuasi-random low variance
sequence obtained 
by clustering
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Ray tracing

1 source, intensity I 

40 fixed sources I
i
=I/40

8 samples with
Quasi-Monte-Carlo
integration
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Ray tracing

 Depth of field
 The camera lense, eye, etc. .. cannot produce a sharp 

image from 0 to infinity.
 Geometrically, only objects on a given plane are sharp.

 Important concept !
 Qualitative distance information
 Bring what is important out (eg. portrait on blurred background)
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Ray tracing

 Three techniques to account for the depth of field:
 By Post-processing

 Calculate the image without changing...
 At each point of the image, one has an idea of the depth (Z-buffer)
 With this z variable, blur the image starting with points far away and 

proceed toward the observer
 This is done is in Blender
 Not very accurate and frequently, artifacts are visible

 Successive rendering
 Several complete renderings with camera positions slightly shifted, 

which are then merged
 Similar to the calculation of shadows with n stationary sources – slow !

 Monte Carlo 
 Each pixel is made  with n separate calculations with slightly modified 

(quasi-random) positions of the camera 
 Similar to the calculation of shadows (2nd method)
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Ray tracing
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Ray tracing

 Imperfect mirror reflections
 Due to surface irregularities

 The incident beam is reflected in a direction having a certain 
variance around the "mirror" configuration

 Sample randomly

 It is indeed a specular reflection
 Here, we want to see the image of other objects (Phong shading 

does not allows this)
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Ray tracing

100 samples per point on the flat surface
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Ray tracing

 Ray tracing with sampling
 Provides more realistic images
 Significant CPU cost ... but simple implementation
 Also called "distribution 

ray tracing"
 Each pixel is not the result of

a single ray but instead the result
of a distribution of rays

 Non-deterministic
approach are used 
(quasi-random distribution) 
to avoid the Moiré pattern

 Statistical treatment is possible

2 samples
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Rendering equation
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Rendering equation

 Until now, the procedure only takes into account the 
illumination of diffuse surfaces by direct light sources

 It solves very approximately what is called the  
"rendering equation"

 Light energy balance written for any point on the surface

                = light leaving the point
                           = emitted light
                           = incident light        
                                 = function of bidirectional

                      spectral reflectance (« BRDF »)
                     Attenuation factor related to the angle of incidence

Lo (x ,ω ,λ)=Le(x ,ω ,λ)+∫
W

Li(x ,ω' ,λ)(ω'
⋅n) f r (x ,ω' ,ω ,λ)dω'

Lo (x ,ω ,λ)

f r (x ,ω' ,ω ,λ)

ω
'
⋅n

lm⋅m−2
⋅sr−1

sr−1 Li (x ,ω ,λ)
Le (x ,ω ,λ)

W
ik

ip
ed

ia
 I

m
ag

e

n

Infinitesimal 
solid angle
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Rendering equation

 Expression of the rendering equation as a 
function of infinitesimal surface elements

L(x ,ω ,λ)=Le (x ,ω ,λ)+∫
W

f r (x ,ω' ,ω ,λ)L(x ,ω' ,λ)(ω'
⋅n)dω'

L(x ,ω ,λ)=Le ( x ,ω ,λ)+∫
S

f r (x ,ω' ,ω ,λ)L(x ' ,ω' ,λ)G ( x , x '
)dA'

( x '
)

G ( x , x '
)=

cosθ cos θ'

‖x−x '
‖

2 V ( x , x'
)

V ( x , x'
)={1  if visible 

0  if not visible



nx
dA x

∥x−x '
∥


'

x'

(ω
'
⋅n)d ω'

=cosθdω'

d ω'
=

cosθ'

‖x−x '
‖

2 dA'
(x'
)


'


dA'
 x'


n'
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Rendering equation

 How to solve ?
 Finite element method (radiosity)

 Mesh surfaces
 Approximation of the radiosity on each element
 Solving a linear system with N unknowns
 Restricted to a simple form of diffuse reflection models 

 Stochastic methods
 Based on ray tracing
 Takes the conservation of energy into account
 Based on the calculations of  probabilistic paths from the light 

source to the observer
 More varied physical models
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Rendering equation

 Stochastic methods
 Metropolis Light Transport : an efficient method

 Solves the rendering equation in an unbiased way
 Simple implementation, good convergence properties
 Cf article of 1997:

 An addition to Blender allows you to use this method cf website

 Allows the calculation of global illumination for 'difficult' scenes 
 ex. dark room next to a bright room separated by a door slightly ajar

E. Veach and L.J. Guibas, Metropolis Light Transport. In SIGGRAPH' 97: 
Proceedings of the 24th Annual Conference on Computer Graphics and 
Interactive Techniques, 1997, pp. 65-76.

www.luxrender.net
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Rendering equation
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Radiosity

 Finite element method (radiosity method)
 Assume all surfaces are discretized in n patchs P

i
 .

Each patch P
i
 has an aera A

i
, an orientation n

i
, a 

radiosity B
i
, ...

 The amount of energy transmitted from the patch P
i
 to the patch P

j
 

depends on their relative orientation, area, and other geometrical 
parameters.

n
i

A
i

A
j

n
j
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Radiosity

 Radiosity equation

 We assume a Lambertian reflection
There is therefore independence from the orientation

 We can therefore integrate the radiance (luminance) in any direction 
(hemisphere) : radiosity is obtained

 Similarly with the reflectivity:

f r x ,' , ,= f r  x ,

B  x ,=∫


L  x ,cosd = L  x ,

L x , ,=L x ,



A=1



R  x ,=∫


f r  x ,cos d = f r  x ,

Le  x , ,=Le x ,

L x , ,=Le x , ,∫
S

f r  x ,' , , L x ' ,' ,G  x , x'
dA'

x '




nx
dA x


'

x'


'


dA'
 x'


n'
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Radiosity

 We finally obtain (at each point x):

 F is a shape factor : percentage of light leaving dA' 
coming on dA .

B  x=Be  xR x ∫
S

B x '
F  x , x '

dA'
 x '


F x , x '
=

G x , x '




L x , ,=Le x , ,∫
S

f r  x ,' , , L x ' ,' ,G  x , x'
dA'

x '
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Radiosity

 Radiosity equation

 Integral equation of the second kind

B  x=Be  xR x ∫
S

B x '
F  x , x '

dA'
 x '


f  x=g  x∫ k  x , x'
 f  x'

dx '
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Radiosity

 Solving of radiosity equation: space discretization
 No need for a 

conforming mesh
 Variable size
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Radiosity

 Solving of radiosity equation: space discretization

 It will be assumed constant variable on patch P
i

 The shape functions N
i
 are equal to 1  on the patch P

i
 and 0 

everywhere else... 

B  x=Be  xR x ∫
S

B x '
F  x , x '

dA'
 x '


B  x=∑
i

Bi N i x 

Be  x=∑
i

E i N i x 

R  x=∑
i

Ri N i x 
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Radiosity

 Conversion towards a discrete linear system...

 This equation is satisfied for each point x . So we can 
integrate on each patch...

B  x=Be  xR x ∫
S
∑

j

B j N j x
'
F  x , x '

dA'

∑
i

Bi N i  x=∑
i

E i N i x ∑
i

Ri N i  xB j [∑j
∫
S

N j x
'
F  x , x '

dA'

]

∫
S ∑i Bi N i x dA=

∫
S ∑i E i N i  x∑

i

Ri N i x B j [∑j
∫
S

N j  x
'
F  x , x'

dA'

]dA

Bi Ai=E i AiRi∑
j

B j∬
S 2

F  x , x '
N i x N j  x

'
dA dA'
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Radiosity

 We have

 We set :

 Reciprocity :

  Unity sum  : 

F x , x '
=

coscos '

∥x−x '
∥

2
V  x , x '



T ij=T ji=∫
Ai

∫
A j

coscos '

∥x−x '
∥

2
V x , x '

dA dA'

T ij=Ai F ij

T ij=Ai F ij T ji=A j F ji A j F ji=Ai F ij

∑
j

F ij=∑
i

F ji=1
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Radiosity

 Finally,

 Use reciprocity …

 Linear system of radiosity

Bi Ai=E i AiRi∑
j

B j A j F ji

Bi=E iRi∑
j

B j F ij

A j F ji=Ai F ij


1−R1 F 11 −R1 F 12 ⋯ −R1 F 1 n

−R2 F 21 1−R2 F 22 ⋯ −R2 F 2 n

⋮ ⋮ ⋱ ⋮

−Rn F n1 −Rn F n 2 ⋯ 1−Rn F n n


B1

B2

⋮

Bn
=

E1

E 2

⋮

E n
  I−K B=E
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Radiosity

 It remains to calculate F
ij 
and solve the system.

 For a scene, it is done once, whatever the viewpoint

 Calculation of F
ij
 (This is the most expensive operation!)

 Purely geometrical
 There are  n2

 Many vanish :
 Mutually hidden patches
 Incompatible orientation
 F

ii
 terms if the patches are plane



42

Computer Graphics

Radiosity

 Calculation of Fij


 Brute force: numerical 
integration for each pair 
of patches Pi - Pj

 One can use a Gaussian 
quadrature.

 If the patches are distant,
the term is calculated 
with 1 point !

 

T ij=∫
Ai

∫
A j

coscos  '

∥x− x'
∥

2
V  x , x '

dA dA'T ij=Ai F ij

∫
−1

1

f x  dx≈∑
i=1

n

wi f  x i
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Radiosity

 Gauss points for the 
triangle

∫
T

f  x , y dxdy≈A∑
i=1

n

wi f x i , y i
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Radiosity

 There are other methods:
 Projection of patches Pj on a "hemicube" centered on the patch Pi
 The calculation of Fij is reduced to the calculation of the form factor 

between patch Pi and the projection of Pj on the hemicube.
 The hemicube is discretized: the projection is a collection of squares 

whose contribution to Fij is simple

cf. « Computer Graphics : Theory into practice, Jeffrey McConnell, 
Jones & Bartlett ed. » for more details.
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Radiosity

 Solving of the linear system
 Iterative by Gauss-Seidel
 Direct methods (LU or gaussian pivoting) usually too slow.
 We do not seek high accuracy...


1−R1 F 11 −R1 F 12 ⋯ −R1 F 1n

−R2 F 21 1−R2 F 22 ⋯ −R2 F 2 n

⋮ ⋮ ⋱ ⋮

−Rn F n 1 −Rn F n 2 ⋯ 1−Rn F n n


B1

B2

⋮

Bn
=

E1

E 2

⋮

E n
  I−K B=E
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Radiosity

 Jacobi iterations

 For i = 1 to n 

 We initialize with 
 Slow convergence (but easily scalable)

 Gauss-Seidel iterations

 For i = 1 to n
 Same initialisation.
 Faster convergence than the Jacobi method (but parallelization is  

more difficult) 

 I−K B=E

Bi
k 
=E iRi∑

j=1

n

F ij B j
k−1

B0=E

Bi
k 
=E iRi ∑

j=1

i−1

F ij B j
k 
∑

j=i

n

F ij B j
k−1

Bk =K Bk−1
E
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Radiosity

 After the radiosity calculation are done, display the 
resulting radiosity

 The value of radiosity of each patch is simply used as 
a texture, changing emissivity of the corresponding 
surface.

 The construction of the image is done by conventional 
raytracing

 Note: Initialization of emitting surface can be done by applying the 
algorithm of ray-tracing with "classical" (point) sources

 The radiosity calculation does not depend on the position of the 
viewer

 The result of the calculation can be used, also for the real-time 
rendering (OpenGL or others)
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Radiosity

 Radiosity calculation: evolution of convergence

 Issues with radiosity simulations
 Difficulty with sharp shadows
 Result depends on the discretization !
 High memory use / slow calculations
 Limitations to diffuse surfaces
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 Cornell box (1984-1985)

Radiosity

Measured radiosity (CCD image) Calculated radiosity
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Textures
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Textures

 The materials we see in everyday life have variable 
surface properties

 Example : wood
 Uniform at a very large scale, but strongly variable at small scale
 Color varies
 Specularity
 Direction of anisotropy
 Etc...
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Textures

 Example 2 : checkerboard
 Repeated geometry
 Color changes
 Handmade artifact...
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Textures

 To design a texture: 
 Solution 1 

 Model each area as separate objects, and assign a specific material
 Works for simple textures (checkerboards)
 Difficult to realize continuous variations such as for wood

 Solution 2
 Define a function that assigns to each point on the surface a 

different characteristic
 An artifact's surface is bi-dimensional  (u,v)
 One can thus apply an image onto the geometry of the artifcat
 Often, simple bitmaps are used



54

Computer Graphics

Textures

Textures can account for variations of the 
surface's properties
 This is a function (often a scalar) of space coordinates 

on a surface
 Affects the color, reflection model parameters (phong p. ex. )
 May also affect the geometry: the surface itself is disturbed or the 

calculation of normal is disturbed

 Allows very fine modeling even with a coarse 
geometric model

 Instead of having a very fine geometric model, a kind of image is 
applied on the surface at each point defining the precise 
characteristics.
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Textures

 Texture = function of (u,v)
 Problems is the application of textures: where is the image projected 

onto the surface defined in (u, v)?
 Only easy for rectangles (direct mapping)
 Otherwise, transformations are needed (more interesting!)

 We're talking about flat textures, but there are also 3D 
textures

 Function of (u,v,w)
 This texture is assessed only on

the surface of the volume
(special case: transparent volumes)

 Interesting for solid materials
 Often this is defined analytically 

(or via a procedural definition)
 Example : rendering of a block of

carved wood.
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Textures

 Texture coordinates
 How to apply the texture?

 What is needed is a function f that maps (u,v) to (x,y,z)
 This looks like a parametric surface definition
 In fact, if the surface is parametrically defined, we have this function 

f  naturally
 When calculating the 

intersection of a ray 
with the surface, 
the couple (u,v) is 
immediately 
obtained. u , v 

x , y , z 

Bidimensional texture
 in the field D

f : D S

Tridimensionnal surface
S
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Textures

 Texture coordinates
 Parameterization (u,v) do not generally preseve 

measures of angles, lengths, or areas.
 We would like the placement of the texture to be 

controlled so that its appearance (in (x,y,z) 
coordinates) is suitable.

 In the following, let's consider an application f : 
(u,v) → (x,y,z).

 This function defines a surface
 In particular, it allows to apply an image on a surface
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Textures

A surface is expressed in this form:

u,v are two real parameters
 All points on the surface are 

obtained by varying u and v.

P u , v ={
x= f u , v 
y=g u , v
z=hu , v

x

y z

u,v

u=cste

v=cste
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Textures

We can define a curve on the surface:
Parametric space                   Ambient space

x

y z

t

u=cst

v=cst

P u , v : {
x= f u , v 
y=g u , v
z=hu , v

 t :{
x= f u t  , v t 
y=g u t  , v t 
z=hu t  , v  t 


uv
t : {u=u t 

v=v t 
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Textures

Regularity and continuity of the parameterization

 A parametric surface is of class C
k
 if the application 

P(u,v) is of class C
k
. (i.e. k-times differentiable)

 A parameterization is regular if and only if

 The points that are not satisfying this are singular 
points.

 Equivalent-C
k
 parametrizations are regular ont the 

same domain...

∂ P⃗
∂ u
(u0 , v0)×

∂ P⃗
∂ v
(u0 , v0)≠0⃗ ∀(u0 , v0)∈D⊂ℝ2



  
61

Computer Graphics

Textures

Differential geometry for parametric surfaces

 Position P :

 Unit tangent vectors T u and T v :

 These vectors are not always perpendicular

 Tangent plane (parametric form)

T u
u , v=

∂ P
∂u
⋅∣∂ P
∂ u ∣

−1

=
P u

∣P u∣
T v
u , v =

∂ P
∂ v
⋅∣∂ P
∂ v ∣

−1

=
Pv

∣Pv∣

P u , v=[
x u , v
y u , v 
z u , v ] Pu

=
∂ P
∂ u

Puv
=
∂

2 P
∂u ∂v

⋯

Pt u0 , v0
a ,b=P u0 , v0a⋅T u

u0 , v0b⋅T v
u0 , v0

a , b∈ℝ2
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 Normal vector N :

N (u , v)=
Norm(u , v)

|Norm(u , v)|
 with Norm(u , v)=T u

×T v  or Pu
×P v

T u

T v

N
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Textures

 Area:

1st fundamental form
 Other notation of a the area

du P u

dv P v

dS

A=∬
S

dS

dS=∣du⋅Pu
×dv⋅Pv

∣=∣Pu
×P v

∣dudv

∣a×b∣2=a⋅a ⋅b⋅b−a⋅b2

A=∬
D

√(eg− f 2
)dudv

Lagrange's identity

dS=√(e g− f 2
)dudv with e=Pu

⋅Pu  , f =Pu
⋅P v  , g=P v

⋅P v
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Textures

 Calculate the length of a curve on a surface


uv
t : {u=u t 

v=v t 
 t :{

x= f u t  , v t 
y=g u t  , v  t 
z=hu t  , v t 


'
=

dP ut  , v t 
dt

u '
=

du t 
dt

⋯

P u , v : {
x= f u , v 
y=g u , v
z=hu , v

Pu
=
∂ P u , v
∂u

Pv
=
∂ P u , v
∂ v

d uv
 t =du

dv =u
' dt

v ' dt 
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L=∫
a

b

|Γ⃗'
(t)|dt=∫

a

b

√|Γ⃗'
(t)|

2
dt

Γ
'
(t)=u'

(t)Pu
(u(t ) , v (t))+v '

(t)Pv
(u(t ) , v (t))

∣
'
t ∣2=e u'

 t 22 f u '
t v '

t g v '
t 2

with e=Pu⋅Pu  , f =Pu⋅P v  , g=P v⋅Pv

 Derivation in series: 
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Textures

 If we set

which amounts to

( we have                                    )

, it is in fact a quadratic form:

ds=√e u '
(t )2+2 f u'

(t )v '
(t)+g v '

(t)2 dt

L=∫
sa 

s b

ds=sb −sa

ds=e du2
2 f dudvg dv2

e u '
t 22 f u'

t v '
t g v '

t 2=u'
t  v '

 t  e f
f g u

'
t 

v '
t 

L=∫
a

b

 u'
t  v '

t  e f
f g u

'
t 

v '
t dt
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 Angle between two curves ...

cos=

u1
'
t  v1

'
 t  e f

f g u2
'
t 

v2
'
t 

 u1
'
t  v1

'
t   e f

f g u1
'
t 

v1
'
t  u2

'
t  v2

'
t   e f

f g u2
'
t 

v2
'
 t 

1
'
 t ⋅2

'
t =∣1

'
 t ∣∣2

'
t ∣cos=u1

'
t  v1

'
 t   e f

f g u2
'
t 

v2
'
t 
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 The 1rst fundamental form is the application

 It is a symmetric bilinear form that can "measure" actual distances 
from variations in the parametric space ...

 The M
1
 matrix is a representation of the metric tensor.

 M
1
 is also related to the Jacobian matrix  

 of the transformation (u,v) → (x,y,z) (It is JTJ ). 

1d 1
uv , d 2

uv
=du1 dv1  e f

f g du2

dv2
=du1 dv1 M1du2

dv2


L=∫
a

b

1d 
uv , d uv

dt cos=
1d 1

uv , d 2
uv


1d 1
uv , d 1

uv
1d 2

uv , d 2
uv


A=∬
D
√ det M1 dudv ( =∬D det J dudv  under some conditions)

with e=Pu⋅P u  , f =Pu⋅P v  , g=P v⋅P v

J=
∂ x /∂u ∂ x /∂ v
∂ y /∂ u ∂ y /∂ v
∂ z /∂u ∂ z /∂ v 
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 Back to our textures
 An image is to be applied on a curved surface
 If the coordinates u,v are used as texture coordinates, the areas are 

not generally preserved.
 Using the first fundamental form, we can compensate this by 

defining an alternative parametrization
 Example: a sphere

P (u , v)={
x (u ,v)=r⋅cos u cos v
y (u , v)=r⋅sin u⋅cos v
z (u , v)=r⋅sin v

( e f
f g )

e=r2
⋅sin2 u cos2 vcos2 u cos2 v

f =r2
⋅(sin u cos v sin v cos u−sin u cos v sin v cos u)=0

g=r2
⋅cos2 u sin2 vsin2 u sin2 vcos2 v 
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 Back to our textures
 First fundamental form and the metric tensor

 Area ratio as a function of the position

 Ratio of the distances in function of the position (iso-u and iso-v)

M1= e f
f g 

e=r2
⋅sin2 ucos2 vcos2 u cos2 v =r2 cos2 v

f =r2
⋅sin ucos v sin v cos u−sin u cos v sin v cos u=0

g=r2
⋅cos2 u sin2 vsin2 u sin2 vcos2 v =r2

dA=det M1 dudv

det M1=e⋅g=r2
∣cos v∣

dL=1 d 
uv , d uv
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 We set                        (we are interested in the 
direction u)

 With                       (direction v)

   (independent of the position)

dL=1 d 
uv , d uv

=dt  1 0   e f
f g 10

d uv
=dt⋅10

 0 1   e f
f g 01= g=r

d uv
=dt⋅01

 1 0   e f
f g 10=e=r∣cos v∣
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 An image to display is centered at (u
0
,v

0
) on the 

sphere : how to prevent it from deforming too much?
 What is the connection that must be made 

between the texture coordinates 
and the parameters (u,v) ?

 Suppose that           is aligned with (u, v)
 We want to keep the distances according to

   and     .
 We set 

(u
0
,v

0
) 



 ,

 ,


1 :u= f 1

*


v 


2 : u

v= f 2
*


d 1: 
∂ f 1

*


∂
*

d *

0 
d 2 : 

0
∂ f 2 

*


∂
*

d *
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 Calculate the actual distance along     : it must be 
equal to


1

L  =∫
0



1d 
1 , d 1

=

L  =∫
0



∂ f 1
*


∂
*

d * 0⋅ e f
f g 

∂ f 1
*


∂
*

d *

0 



L  =∫
0



e  ∂ f 1 
*


∂
* 

2

d *
=r cos v [ f 1 − f 10 ]

r cos v [ f 1− f 10 ]=

f 1(h)=
h

r cos v
+ f 1(0) with f 1(0)=u0
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 Same along      : actual distance = 
2 

L =∫
0



1d 
2 , d 2

=

L =∫
0



 g  ∂ f 2 
*


∂
* 

2

d *
=r [ f 2 − f 2 0 ]

r [ f 2 − f 2 0 ]=

f 2 (ξ)=
ξ

r
+ f 2(0) with f 2(0)=v0
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 Change of coordinates

 Is the area preserved ?

  Yes if

u=


r cos v
u0=



r cos rv0
u0  =u−u0r cos v

v=


r
v0  =v−v0r

dA=det M1
* d  d 

M 1
*
= e

* f *

f * g * 
with e*

=Ph⋅Ph  , f *
=Ph⋅Pξ  , g *

=Pξ⋅Pξ

det M1
*
=1
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 Computation of the terms of the metric tensor

P=r⋅{
−
∂ u
∂

sin u cos v

∂u
∂

cos u cos v

0

P u ,v ={
x u , v =r⋅cos u cos v
y u , v=r⋅sin u⋅cos v
z u , v=r⋅sin v

 P  ,={
x=r⋅cos u  ,cos v  ,
y=r⋅sin u  ,⋅cos v  ,
z=r⋅sin v  ,

u  ,=


r cos rv0
u0 v  ,=



r
v0

P=r⋅{
−
∂ u
∂

sin u cos v−
∂ v
∂

cos u sin v

∂u
∂

cos u cos v−
∂ v
∂

sin u sin v

−
∂v
∂

cos v
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→ Preservation of the area (this is by chance)

e*
=P⋅P=r2 ∂ u

∂ 
2

cos2 v

f *
=P⋅P=r 2 ∂ u

∂

∂u
∂

cos2 v

g *
=P⋅P=r2∂u

∂ 
2

cos2 v1
det M1

*
=e* g *

− f * 2
=r
∂ u
∂

cos v

=
r

r cos


r
v0

cos 


r
v0=1!
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u

v

x

y

z
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 Texture coordinates
 For non parametric surfaces

 Example : discretized surfaces (triangles)
  (u, v) is not obtained in the calculation of the intersection of a ray 

with the surface
 We must define the inverse operation f :

 For a point P, the texture is obtained at the position
 We must construct a 

plausible 
parameterization of the
triangulated surface

 u,v must be stored
at each vertex 
of the mesh

u , v 

x , y , z 

Dimensional texture in
the domain D

: SD

Three-dimensional 
surface S

 : SD

P 
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 Construction of a parameterization of a triangulated 
surface (mesh)

 Possibility 1) : Projection of the mesh vertices on a topologically 
equivalent surface (ex. Plane, sphere ...)

 Knowing the projection, the surface's
parameterization is directly associated it

 If the triangulation comes from a "complex" surface (e.g. Bezier type), 
this technique is used. The projection step is not necessary (the vertices 
are on the surface), it suffices to assign to each vertex the values of the 
parameter on the original surface.

u , v 
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 Construction of a parameterization of a triangulated 
surface (mesh)

 Possibility 2) : "Flatten" the mesh and build parameterization 

Goal here: build a parameterization that respect some of the 
following qualities :

 Low distortion (angle conservations)
 Area ratios are roughly preserved 
 Natural coordinates (in geodesic distances)

 Rather complex algorithms, solutions to the problem are quite recent
 Amounts to solve partial differential equations



82

Computer Graphics

Textures

u

v

Texture in the 
parameteric 
space

u

v

Triangles
in the parameteric 
space (here, 
conforming mapping)

Triangles in 
real space

Texture
in the real space

C
G

A
L

 li
br

ar
y 

(L
. S

ab
or

et
, P

. A
ll

ie
z,

 B
. L

év
y)

http://www.cgal.org/...

http://www.cgal.org/Manual/last/doc_html/cgal_manual/Surface_mesh_parameterization/Chapter_main.html
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 Texture coordinates
 For periodic textures

 The application               may be non bijective

 Example : brick wall, checkerboard, etc...
 But also pseudo-random textures - one should not see the periodicity 

but the base texture is set on a small area only.

u , v 

x , y , z 

Dimensional texture 
in the domain D

: SD

Three-dimensional surface S

: SD
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 Examples of applying textures
 Parametric surface: a sphere

uv 
x=r sin u cos v
y=r sin u sin v

z=r cos u 
JPG image (projection called « Plate Carrée »)
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 The application of texture here concerns the color 
(color defined by the used image)

 One can change the other parameters of the models 
of reflection

 Emissivity (light source)
 Specular
 etc...

 It can also affect the geometry
 Local modification of the surface shape
 Modification of the normal vectors (cf. Phong interpolation)
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 Using a picture at night, 
changing the emissivity 
setting in addition to the 
color
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 Geometry modification
 Possibility 1 - Simply moving the geometry

 Texture (scalar = grayscale) is interpreted as the normal component 
of the displacement vector.

 The ray intersects the new geometry
 The normal is computed according to the new geometry

h
normal(h)

x

x

dh
+

h*=h+dh

x
n*=normal(h+dh)
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 Result



89

Computer Graphics

Textures

 Problems 
 The resolution of the texture is very often much greater than that of 

the geometry (often discretized)
 Significant cost if we want to respect the texture's resolution  - the 

discretization of the geometry should be very fine

750    19000         76000 1265000
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 Geometry modification
 Possibility 2 - We only change the calculation of 

normals (called "bump mapping")
 Texture (scalar = grayscale) is interpreted as the normal component 

of the displacement vector.
 The ray intersects the original geometry.
 The normal is calculated at each point as if we were dealing with the 

new modified geometry

x

x

dh
+

h*=h

x
n*=normal(h+ndh)

h
n=normal(h)
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 Calculate new normals

n=tu×tv

n*
=

∂h n
∥n∥

dh
∂ u

×

∂h n
∥n∥

dh
∂ v

t u=
∂ t
∂ u

t v=
∂ t
∂ v

n*
=n

hv tu×n −hut v×n

∥n∥
⋅k 

can control the depth effect−1k1

hv=
∂ dh
∂ v

Blinn formula

hu=
∂ dh
∂ u
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 Result
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 Comparison
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 Geometry modification
 Possibility 3 - Using a normal map

 The texture is directly interpreted as the normal to the surface 
(texture with two component = colors)

 The ray intersects the original geometry.
 The normal for each point is obtained by the texture

h

x

x

dn
+

h*=h

x n*=dn
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 How are normal maps created ?

 1 –accurate model of the geometry

 2 – Calculation of rendering such 
that  :

- The red channel is the x value 
of the normal (between -1 and 1)

- The green channel is the y value 
of the normal (between -1 and 1)

- The blue channel is the z value
of the normal (between 0 and 1 !)

- Additional constraint :
We always have 

 The implementation of this scheme 
depends on the sofware used ... 
There are tutorials for Blender.

 Once the normal map is computed, one can 
perform a rendering on a simplified geometry.

x2
 y2

z2
=1
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 Result



97

Computer Graphics

Textures

 Shades on a sculpture

wikipedia
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 Normal maps: a tool for generating realistic images 
using a simplified geometry

 The overall shape of the object is approximated by a coarse mesh
 Details are approached at each point by the knowledge on the one 

hand of the real normal, and on the other hand, of the color 
(two textures)

 Differences with respect to technique 2?
  Accuracy: normals are accurate (close to the discretization)

In the other case (slide 89), they are evaluated from the displacement 
map by differentiation. However, the relative error in the derivative is 
MUCH greater than that of the original variable.
It is therefore much better to store it directly !
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 (Very) realistic rendering

Wan-Chun Ma    Tim Hawkins    Pieter Peers    Charles-Felix Chabert    Malte Weiss    Paul Debevec
University of Southern California Institute for Creative Technologies

file:///media/bechet/scratch/bechet/boulot/scratch/bechet/boulot/cours/cours_liege/infographie/cours5/EGSR2007_SGI_Hires.mp4

