Computer Graphics

Colorimetry

Colorimetry

Computer Graphics

Colorimetry

- Science related to the perception of colors
- Perceptive « Measure» of color
- Never an objective measure : the perceived color depends on the capturing device. Here, it is the human eye. Other species see differently (Bees do see ultraviolet for instance)
- Goal here : accurate reproduction of colors from our point of view.
- What is color?
- Light = mix of radiations having different wavelengths
- different wavelengths = different colors
- Light may be decomposed into a spectrum = separation of photons (light quanta) with respect to the different wavelengths

Computer Graphics

Colorimetry

- Spectrum measure: Watt per square meter per nanometer (of wavelength) (/steradian)

- The spectrum is continuous. There are an infinite number of independent elementary colors for who is able to see them all (... spectrometers)

Computer Graphics

Colorimetry

- Measure of light
- A detector gives a scalar value (a number) when it by photons
- That scalar is roughly proportional to the number of photons, for a given wavelength
- Each photon has a chance to be detected that depends on its wavelength
- One never directly measures the wavelength of a radiation!
- This model is true for semiconductors as well as for the eye's photosensitive cells

Colorimetry

- Detector

Computer Graphics

Colorimetry

- The formula is true for the received luminous power
- Power is proportional to the nb of photons / sec
- The input spectrum has a spectral power distribution
- The detector has a spectral sensitivity (spectral response)

Computer Graphics

Colorimetry

- Scalar product
- If s and r are vectors (with an infinite number of dimensions) therefore :

$$
X=\int_{0}^{+\infty} r(\lambda) s(\lambda) d \lambda
$$

is a scalar product : $X=s \cdot r$

- In fact, the computation is made exactly like that, if one considers a sampled version of s et r (every 5 nm for instance)

$$
\begin{gathered}
\bar{s}[i]=\frac{1}{\Delta \lambda} \int_{\lambda_{i}-\frac{\Delta \lambda}{2}}^{\lambda_{i}+\frac{\Delta \lambda}{2}} s(\lambda) d \lambda \quad \bar{r}[i]=\frac{1}{\Delta \lambda} \int_{\lambda_{i}-\frac{\Delta \lambda}{2}}^{\lambda_{i}+\frac{\Delta \lambda}{2}} r(\lambda) d \lambda, \lambda_{i+1}-\lambda_{i}=\Delta \lambda \\
X \approx \sum_{i} s[i] r[i] \Delta \lambda
\end{gathered}
$$

Computer Graphics

Colorimetry

Sensitivity of the human eye

Computer Graphics

Colorimetry

- The retina contains four types of light-sensitive cells
- Cones (S), (M) and (L) are sensitive to short, medium and long wavelengths respectively
- S sensitive to blue
- M and L sensitive to green and red
- Rods (R) are sensitive only to low luminance, and cannot discriminate colors.

Computer Graphics

Colorimetry

- Response of the cells to light
- Those are broadband detectors
- Compromise between sensitivity and ability to discriminate colors
- S cells (blue) are less sensitive that M and L cells
- One may integrate over the wavelength
- One obtains the individual response for each cell type S,M or L.

Computer Graphics

Colorimetry

- Response of cones to a spectrum $s(\lambda)$

$$
\begin{aligned}
& S=\int_{0}^{+\infty} r_{S}(\lambda) s(\lambda) d \lambda \\
& M=\int_{0}^{+\infty} r_{M}(\lambda) s(\lambda) d \lambda \\
& L=\int_{0}^{+\infty} r_{L}(\lambda) s(\lambda) d \lambda
\end{aligned}
$$

Computer Graphics

Colorimetry

- Colorimetry is the answer to the following problem: « From a physical description of light, explain the perception of colors »
- The answer to this question is known and standardized since the 30's

Computer Graphics

Colorimetry

- From a continuous spectrum, one gets only three scalars.
- Lots of information is lost !
- It is possible to find distinct spectra that give the same "tristimuli" scalars S, M and L.
- These spectra are metamers for the human vision
- We'll take advantage of this in the sequel.

Computer Graphics

Colorimetry

Parameters of the human eye and definition of absolute colorimetric variables

Computer Graphics

Colorimetry

- Grassmann's laws - 1853 (Hermann Grassmann 1809-1877)
- Human vision is trichromatic
- Every color may be represented by a combination of three primaries (independent colors)
- Principle of superposition

Computer Graphics

Colorimetry

- Grassman's laws
- Principle of superposition Color perception is approximately linear - this is validated experimentally
- Let M_{1} and M_{2} be two monochromatic light beams
- It is asked to an observer to recompose the light of M_{1} from the primaries by choosing the right proportions $\mathrm{R}_{1}, \mathrm{G}_{1}$ and B_{1}. Same for M_{2}.
- When the same procedure is asked for a composition of the two beams $M_{1}+M_{2}$, he will choose the following: $\left(R_{1}+R_{2}, G_{1}+G_{2}, B_{1}+B_{2}\right)$
- Consequence : One may choose any RGB triplet to build the entire visible color set by linear combination, if the three primaries are (linearly) independent.
The RGB triplet is, to a certain extent, conventional.

Computer Graphics

Colorimetry

- Two experiences in the 30s on the sensitivity of the human eye to colors

William Wright, John Guild (independently)

What proportion of the three colors give a similar appearance of the two semi-discs for the subject on the right?

- Experiences done on numerous « normal » subjects (« normal» means they do not have known visual deficiencies)
Wright, William David (1928). "A re-determination of the trichromatic coefficients of the spectral colours". Transactions of the Optical Society 30: 141-164
Guild, John (1931). "The colorimetric properties of the spectrum". Philosophical Transactions of the Royal Society of London A230: 149-187.

Computer Graphics

Colorimetry

- Here, experiences are done with the following color triplet :
- $\mathrm{R}=$ monochromatic source with $\lambda=700 \mathrm{~nm}$
- $G=$ monochromatic source with $\lambda=546.1 \mathrm{~nm}$
- $B=$ monochromatic source with $\lambda=435.8 \mathrm{~nm}$

- The intensities of the three primaries are such that if combined, they blend into a "standard" white.
- Standard white: e.g. lambertian material, reflecting all the incident visible wavelengths, that is lit by the sun, at noon, on a clear day.

Computer Graphics

Colorimetry

- One wishes to reconstruct the following functions : $\bar{r}(\lambda), \bar{g}(\lambda), \bar{b}(\lambda)$

Given by the subject

$$
-G=\int_{0}^{+\infty} \bar{g}(\lambda) s(\lambda) d \lambda
$$

$$
B=\int_{0}^{+\infty} \bar{b}(\lambda) s(\lambda) d \lambda
$$

Computer Graphics

Colorimetry

- Results with a monochromatic test color with a variable wavelength $\lambda \ldots$

Computer Graphics

Colorimetry

- It is sometimes impossible to match the test color with positive intensities (the only ones making sense physically and experimentally)
- This is due to the fact that the eye's sensitivity is not related to the primaries that have been chosen (monochromatic)
- When the matching is impossible, the subject is allowed to add some of the RGB triplet colors to the test color.
- In that case, we consider that this color has been withdrawn from the other side (thus giving a negative value)

Computer Graphics

Colorimetry

- Results with a monochromatic test color with a variable wavelength $\lambda \ldots$

Computer Graphics

Colorimetry

- The curves called $\overline{ }(\lambda), \bar{g}(\lambda), \bar{b}(\lambda) \quad$ are normalized so that the area is unitary:

$$
\begin{array}{ll}
\int_{0}^{+\infty} \bar{r}(\lambda) d \lambda=1 & \int_{0}^{+\infty} \bar{g}(\lambda) d \lambda=1 \\
& \int_{0}^{+\infty} \bar{b}(\lambda) d \lambda=1
\end{array}
$$

Computer Graphics

Colorimetry

- The spectrum is continuous...

The test must therefore be done for any combination of spectra.

- Grassmann's laws (additivity) allows us to use only monochromatic lights, since any spectrum is a linear combination of monochromatic lights.
- The response for any spectrum is then also a mere linear combination of the responses to individual monochromatic lights. That is exactly what we did.

Computer Graphics

Colorimetry

- Some colorimetry concepts
- Luminance
- Magnitude of the response of the eye to the spectrum, independently of color
- Given by the product of the spectrum (spectral power distribution) and the sensitivity of the eye for each wavelength V_{λ}
- Artificial light sources are nowadays optimized to radiate exclusively where the sensitivity is maximal.
- Luminance is noted Y
- It has a response curve (like S, M and L), given by r_{Y}

$$
Y=\int_{0}^{+\infty} r_{Y}(\lambda) s(\lambda) d \lambda=r_{Y} \cdot s
$$

- r_{Y} 《 is » V_{λ}
- r_{Y} is a linear combination between r_{S}, r_{M}, r_{L}

Computer Graphics

Colorimetry

- Chromaticity
- What remains when the luminance is set to e.g. 1 (constant)
- It is true color, independently to luminance
- Multiply a spectrum by a constant does not change the chromaticity, only the luminance!
- Dominant wavelength
- Every color can be decomposed into "white" plus a pure monochromatic color of the dominant wavelength
- «Tint»
- Purity
- Ratio of the power of the dominant wavelength to that of the "white".
- Also called « saturation»

Computer Graphics

Colorimetry

- Color space
- 3 dimensional space
- The color "feeling" is approximately independent with luminance (except at low light intensities \rightarrow inactive cones, only rods are active)
- There is a narrow window where all 4 cell types are active. In this window, at least theoretically, human vision is quadrichomatic !
- We may therefore restrict to 2 dimensions by normalizing
$r=\frac{R}{R+G+B} \quad g=\frac{G}{R+G+B} \quad b=\frac{B}{R+G+B}=1-r-g$
- One obtains a chromatic diagram in the e.g. in the r, g axes (these are the variables usually chosen in the litterature)

Computer Graphics

Colorimetry

- Chromatic diagram in r,g axes

Computer Graphics

Colorimetry

- 1931 CIE Standard
- Use of "imaginary" primaries such that the convex combination (with positive coefficients) allows to represent any color the human eye is able to perceive.
" Those are qualified as "imaginary" because it is impossible to physically realize these light sources. They are more saturated than monochromatic radiations !
- It is a mere change of frame in the chromatic diagram thanks to Grassman's laws
- The new coordinates are simply called X, Y et Z

Computer Graphics

Colorimetry

- XYZ color space
- Y is the luminance (by definition)
- X and Z are chromatic components
- As in the RGB color space, one may divide by the sum to return to a 2D color space (constant luminance)

$$
\begin{gathered}
x=\frac{X}{X+Y+Z} \quad y=\frac{Y}{X+Y+Z} \\
z=\frac{Z}{X+Y+Z}=1-x-y
\end{gathered}
$$

- One may therefore use x, y and Y as coordinates to represent any color. This is the xyY color space, which is equivalent to the XYZ color space, but more practical for 2D representations.

Computer Graphics

Colorimetry

- Chromatic diagram in r,g axes
 université

Computer Graphics

Colorimetry

- Transfer functions

$$
X=\int_{0}^{+\infty} \bar{x}(\lambda) s(\lambda) d \lambda \quad Y=\int_{0}^{+\infty} \bar{y}(\lambda) s(\lambda) d \lambda \quad Z=\int_{0}^{+\infty} \bar{z}(\lambda) s(\lambda) d \lambda
$$

Computer Graphics

Colorimetry

- XYZ in function of RGB
- Linear combination; (conventional, all the values are exact)

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\frac{1}{0.17697}\left(\begin{array}{ccc}
0.49 & 0.31 & 0.20 \\
0.17697 & 0.81240 & 0.01063 \\
0.00 & 0.01 & 0.99
\end{array}\right) \cdot\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)
$$

Computer Graphics

Colorimetry

- Chromatic diagram in x, y axes

Computer Graphics

Colorimetry

- Color fidelity
- Let $s(\lambda)$ a spectrum (real one), one wants to display it correctly on a given device (e.g. LCD screen)
- One could of course reproduce exactly the same spectrum; but it is very difficult (and almost impossible with current technologies)... however, any spectrum that has the same projection in the color space (XYZ or RGB not matter) will do the trick, thanks to metamerism.
- The idea is to find a spectrum that is the screen is able to reproduce AND that is a metamer (for the eye) of $s(\lambda)$.

Computer Graphics

Colorimetry

- Display devices usually work by additive synthesis... université

Computer Graphics

Colorimetry

- RGB emission spectra for a CRT-based display device (e.g. old TV sets)

Computer Graphics

Colorimetry

- RGB emission spectra for an LCD-based display device (e.g. flat panel TV sets)

Computer Graphics

Colorimetry

- The display device may only combine the spectra of the primaries with positive coefficients, and that yield a spectrum that has only 3 "degrees of freedom", even thought it is continuous.

Computer Graphics

Colorimetry

- How to fin the right metamer of s that may be displayed by the device ?
- Compute the R,G et B signals such that the visual response of the eye to the spectrum created by te screen is the same as that obtained with the real spectrum
- Response to the real spectrum :

$$
\begin{aligned}
& \left(\begin{array}{c}
L \\
M \\
S
\end{array}\right)=\left(\begin{array}{lll}
- & r_{L}(\lambda) & - \\
- & r_{M}(\lambda) & - \\
- & r_{S}(\lambda) & -
\end{array}\right)\left(\begin{array}{c}
\mid \\
s(\lambda) \\
\mid
\end{array}\right) \\
& V=M_{L M S} \cdot s
\end{aligned}
$$

Computer Graphics

Colorimetry

- Response to the screen's spectrum :

$$
\begin{aligned}
& \left(\begin{array}{c}
L_{e} \\
M_{e} \\
S_{e}
\end{array}\right)=\left(\begin{array}{lll}
- & r_{L}(\lambda) & - \\
- & r_{M}(\lambda) & - \\
- & r_{S}(\lambda) & -
\end{array}\right)\left(\begin{array}{c}
1 \\
s_{e}(\lambda) \\
1
\end{array}\right) \\
& V_{e}=M_{L M S} \cdot s_{e}
\end{aligned}
$$

- One wants :

$$
\begin{aligned}
& \left(\begin{array}{c}
L_{e} \\
M_{e} \\
S_{e}
\end{array}\right)=\left(\begin{array}{c}
L \\
M \\
S
\end{array}\right) \\
& V_{e}=V
\end{aligned}
$$ université

Computer Graphics

Colorimetry

- Computation of the screen's spectrum :

$$
\begin{aligned}
& s_{e}(\lambda)=R \cdot s_{R}+G \cdot s_{G}+B \cdot s_{B} \\
& \left(\begin{array}{c}
\mid \\
s_{e}(\lambda) \\
\mid
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
s_{R}(\lambda) & s_{G}(\lambda) & s_{B}(\lambda) \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right) \\
& s_{e}=M_{R G B} \cdot C
\end{aligned}
$$

Computer Graphics

Colorimetry

- Computation the control parameters of the screen :

$$
\begin{aligned}
& V_{e}=V \\
& \left(\begin{array} { c c c }
{ - } & { r _ { L } (\lambda) } & { - } \\
{ - } & { r _ { M } (\lambda) } & { - } \\
{ - } & { r _ { S } (\lambda) } & { - }
\end{array} \left|\left\lvert\, \begin{array}{cc}
\mid & \mid \\
s_{R}(\lambda) & s_{G}(\lambda) \\
\mid & \mid \\
M_{L M S} \cdot M_{R G B} \cdot C=M_{L M S} \cdot s \\
C=\left(M_{L M S} \cdot M_{R G B}\right)^{-1} \cdot M_{L M S} \cdot s
\end{array}\right.\right.\right.
\end{aligned}
$$

Computer Graphics

Colorimetry

- But one does not know the real spectrum!
- But we may know the coordinates in an adequate color space: XYZ (or RGB).
- On may construct a metamer spectrum, just by using the reference spectra of the reference light sources (monochromatic) that are defined in the standard; see experience from 1931.

$$
\left(\begin{array}{c}
\mid \\
s_{m}(\lambda) \\
\mid
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
s_{m R}(\lambda) & s_{m G}(\lambda) & s_{m B}(\lambda) \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{l}
R_{m} \\
G_{m} \\
B_{m}
\end{array}\right)
$$

with

$$
\left(\begin{array}{l}
R_{m} \\
G_{m} \\
B_{m}
\end{array}\right)=\left(\frac{1}{0.17697}\left(\begin{array}{ccc}
0.49 & 0.31 & 0.20 \\
0.17697 & 0.81240 & 0.01063 \\
0.00 & 0.01 & 0.99
\end{array}\right)\right)^{-1} \cdot\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

Computer Graphics

Colorimetry

- But one does not know the real spectrum!
- But we may know the coordinates in an adequate color space : XYZ (or RGB).

$$
\begin{aligned}
& \left(\begin{array}{lll}
-r_{L}(\lambda) & - \\
- & r_{M}(\lambda) & - \\
- & r_{S}(\lambda) & -
\end{array}\right)\left(\begin{array}{ccc}
\mid & \mid & \mid \\
s_{R}(\lambda) & s_{G}(\lambda) & s_{B}(\lambda) \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)=\left(\begin{array}{ccc}
-r_{L}(\lambda) & - \\
- & r_{M}(\lambda) & - \\
- & r_{S}(\lambda) & -
\end{array}\right)\left(\begin{array}{c}
\mid \\
s_{m}(\lambda) \\
\mid
\end{array}\right) \\
& C=\left(\begin{array}{c}
\mid \\
s_{m}(\lambda) \\
\mid
\end{array}\right)=\left(\begin{array}{ccc}
\left.\left\lvert\, \begin{array}{ccc}
\mid & \mid \\
s_{m R}(\lambda) & s_{m G}(\lambda) & s_{m B}(\lambda) \\
\mid & \mid & \mid
\end{array}\right.\right)\left(\begin{array}{l}
R_{m} \\
G_{m} \\
B_{m}
\end{array}\right) \\
\left.C M_{R G B}\right)^{-1} \cdot M_{L M S} \cdot s_{m} & =\underbrace{\left(M_{L M S} \cdot M_{R G B}\right)^{-1}}_{\text {two } 3 \times 3} \\
\underbrace{M_{L M S} \cdot M_{m R G B}}_{\text {matrices }} \cdot\left(\begin{array}{l}
R_{m} \\
G_{m} \\
B_{m}
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Computer Graphics

Colorimetry

Response of the screen
$C=\left(M_{L M S} \cdot M_{R G B}\right)^{-1} \cdot M_{L M S} \cdot M_{m R G B} \cdot\left(\begin{array}{l}R_{m} \\ G_{m} \\ B_{m}\end{array}\right)$
Constants defined
once and for all

- How to obtain color coordinates in an absolute color space such as RGB or XYZ from camera data?
- Need to know the characteristics of the camera
- Need to perform the same type of experiences as those made with the humans eye in the 30s
- These experiments will quantify the individual response of silicon detectors
- The whole process is called "calibration"

Computer Graphics

Colorimetry

- Response of the camera : projection

$$
\left(\begin{array}{l}
R_{c} \\
G_{c} \\
B_{c}
\end{array}\right)=\left(\begin{array}{lll}
- & r_{R}(\lambda) & - \\
- & r_{G}(\lambda) & - \\
- & r_{B}(\lambda) & -
\end{array}\right)\left(\begin{array}{c}
\mid \\
s(\lambda) \\
\mid
\end{array}\right)
$$

- Response in the XYZ color space (human eye)

$$
\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{lll}
-\bar{x}(\lambda) & - \\
- & \bar{y}(\lambda) & - \\
- & \bar{z}(\lambda) & -
\end{array}\right)\left(\begin{array}{c}
1 \\
s(\lambda) \\
\mid
\end{array}\right)
$$

- Projections on different "planes" !

Computer Graphics

Colorimetry

- Differences between perceived colors

Metamers of the human eye and metamers of the camera's own photosites are different!

- The camera may discriminate spectra the eye can't, The eye may discriminate spectra the camera can't.

Color space of the camera

perceptual color space(human eye)

perceptual color space(human eye)

Computer Graphics

Colorimetry

- The transfer of information from a camera's color space to the eye's color space is not without problems
- RGB filters that set the spectral response of the photosites on the camera are crucial to the color fidelity
- It is impossible to correct this afterwards!
- The conversion to a working color space (e.g. sRGB) is often done in-camera
- The working color space is often either sRGB or AdobeRGB (see sequel) université

Computer Graphics

Colorimetry

- Color space comparison
sRGB

AdobeRGB

Computer Graphics

Colorimetry

- Notion of « gamut»
- It is the set of colors a given color system may represent
- Example : a CRT screen has three primaries and may only create colors by linear combination.
- This linear combination has positive coefficients...
- The locus of colors that may be produced by the system is the triangle obtained by linking the points corresponding to the three (non-monochromatic) primaries

Computer Graphics

Colorimetry

- With three physical primaries, it is impossible to represent every color that is seen by the human eye, only with convex combinations with positive coefficients
- The best would be to use monochromatic radiations (e.g. laser), for which saturation is maximal
- If one accept to use more primaries, it is possible to be close to the "gamut" of the human eye
- But this is generally not done (expensive)

Computer Graphics

Colorimetry

- Practical managing of colorimetry
- Digital photography : from the shoot to the display/printing
- Knowledge of spectral characteristics of the camera and the printing/display devices
- ICC profiles
- Those calibration data do vary with age !
- Difference between calibration and modeling
- Within gamut limits, it is possible to simulate how a print will look like on a screen

Computer Graphics

Colorimetry

- Subtractive synthesis
- Complementary primaries CMY
- Approximately :

$$
C=1-R ; M=1-G ; Y=1-B
$$

- Photography (transparencies)
- Films
- Paper prints
- Usually black added - CMYK
- Gamut is more complex and

- Depends with illumination! université

Computer Graphics

Colorimetry

Object

Object

Source : Stone (2003)

Computer Graphics

Colorimetry

- How a printed proof looks like depends on the illuminant
- The illuminant is characterized by its color in any of the color spaces seen before
- That defines a so called "white point", which in turn allows to adjust the white balance of the scene
- The eye has a kind of automatic white balancing...

Computer Graphics

Colorimetry

- Exemple: blackbody radiation (sun, incandescent light source)
- Sunlight is approximated by light emitted by a blackbody at $\sim 5800 \mathrm{~K}$
- Determining colorimetric characteristics of a surface involves controlled light

Computer Graphics

Colorimetry

- Colorimetric characteristics of surfaces
- Done under a controlled light environment
- Ideal case = sunlight at 5500K or incandescent lamp
- Beware of fluorescent lights and LEDs that have a very complex spectrum (narrow bands, see picture)
- Check the color rendering index ...

Computer Graphics

Colorimetry

- Perceptually uniform color spaces

- L*a*b* space
- Gamma correction is embedded
- Takes the illuminant into account
- Allows to use every bit of the encoding efficiently
- Based on an experiment of David MacAdam using $0_{0.2}$ 25 points in the 1931 CIE xyY color space
- Asked observers to
 distinguish color differences
MacAdam, David Lewis (May 1942). "Visual sensitivities to color differences in daylight" . JOSA 32 (5): 247-274

Computer Graphics
 Colorimetry

- Perceptually uniform color spaces

Computer Graphics

Colorimetry

- L*a*b* color space definition

$$
\begin{aligned}
L^{*} & =116 f\left(Y / Y_{n}\right) \\
a^{*} & =500 \cdot\left(f\left(X / X_{n}\right)-f\left(Y / Y_{n}\right)\right) \\
b^{*} & =200 \cdot\left(f\left(Y / Y_{n}\right)-f\left(Z / Z_{n}\right)\right) \\
f(t) & =\left\{\begin{array}{cc}
t^{1 / 3} & \text { if } \\
t>\left(\frac{6}{29}\right)^{3} \\
\frac{1}{3}\left(\frac{29}{6}\right)^{2} t+\frac{4}{29} & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

For the D65 illuminant (daylight)

$$
\begin{array}{ll}
X_{n}=0.95043 \\
Y_{n}=1.0 \\
Z_{n}=1.08883
\end{array} \longleftarrow l \begin{aligned}
& x_{n}=0.31271 \\
& y_{n}=0.32902 \\
& z_{n}=1-x_{n}-y_{n}
\end{aligned}
$$

For the D50 illuminant (crepuscular light)

$$
\begin{array}{ll}
X_{n}=0.96421 & x_{n}=0.34567 \\
Y_{n}=1.0 & y_{n}=0.35850 \\
Z_{n}=0.825188 & z_{n}=1-x_{n}-y_{n}
\end{array}
$$

NB. Standard in many image editing software like Photoshop

Computer Graphics

Colorimetry

- How to "calibrate" a scene ?
- Aim - accurate color rendering
- Ideally :
- Calibrated light sources
- Camera whose behavior is perfectly known
- Practically, this is never met !
- Light sources are often not controlled (especially with current trends toward energy efficient LED or fluorescent lights)
- Camera may age and sensor filter dyes may also evolve with time
- Solution : use of calibrated color charts

Computer Graphics
 Colorimetry

- Reference color chart
- The exact colorimetric coordinates of every color patch is known
- Some of the patches have a constant reflectance w / r to wavelength (grey, outlined)

Computer Graphics

Colorimetry

- Reference color chart
- The other patches have a spectral reflectance that is close to that of usual surfaces (eg. skin, tree leaves, etc...). It is a very difficult task to find dyes with these characteristics !
- It means that, whatever the shooting conditions, the behavior of a color patch is similar to the material it is supposed to "mimic"
- Once the shoot done, one have, for each patch, the camera measure, and the theoretical one
- It is then possible to calibrate the whole chain so that color rendering is correct on pictures

Computer Graphics

Colorimetry

- Example : object under artificial light

Computer Graphics

Colorimetry

- Step 1: identify patches and build a colorimetric profile

On the terminal : make_profile FILE.DNG
 université

Computer Graphics

Colorimetry

- Patch description

BOXES 32

BOX_SHRINK 30

XLIST	22						YLIST	8
0	1.0	1.0	0	1.0	1.0			
239	0.6	1.0	66	0.6	1.0			
357	0.6	1.0	185	0.6	1.0			
380	0.4	1.0	208	0.6	1.0			
498	0.4	1.0	326	0.6	1.0			
522	0.6	1.0	349	0.6	1.0			
640	0.6	1.0	467	0.6	1.0			
663	0.6	1.0	494	1.0	1.0			

YLIST
$0 \quad 1.01 .0$
$66 \quad 0.61 .0$
1850.61 .0
2080.61 .0
3260.61 .0
4670.61 .0
4941.01 .0
7820.61 .0
8050.61 .0
9230.61 .0
9470.61 .0
10660.61 .0
10890.61 .0
12080.61 .0
12300.61 .0
13490.61 .0
13730.61 .0
14920.61 .0
15140.61 .0
16330.61 .0
16541.01 .0

- Color coordinates of each patch in the XYZ color space

```
EXPECTED XYZ 30
A1 47.8 50.5 53.2
A2 9.3 9.6 27.6
A3 60.7 62.1 11.2
    4.4 4.6 4.9
        10.5 11.1 11.9
        16.8 17.8 19.5
        32.9 34.7 36.8
        65.1 68.9 72.5
        81.8 86.6 91.0
        47.8 50.5 53.2
B1 36.9 43.1 7.0
B2 15.7 26.5 17.4
        29.8 19.5 20.8
        6.2 5.7 7.9
        10.1 12.3 6.8
        19.9 20.5 6.5
        11.0 9.9 6.8
        36.2 34.2 25.0
        60.7 67.5 73.7
B10 56.3 56.5 70.3
    47.8 50.5 53.2
        14.5 8.9 4.3
        18.6 24.8 52.5
        9.6 7.2 6.1
        18.0 19.8 34.8
C6 43.0 30.9 5.8
C7 57.0 49.6 6.6
C8 69.3 68.9 47.9
C9 64.5 69.9 59.9
C10 47.8 50.5 53.2
```


Computer Graphics

Colorimetry

- Software needs to find the patches (automatically)

Computer Graphics

Colorimetry

- Data read back from the camera :

Exact (theoretical) color coordinates in the XYZ color space

Average over the patch of «raw » color values given by the sensor of the camera

```
DESCRIPIOR "Argyll Calibration Target chart information 3
ORIGINATOR "Argyll target"
CREATED "Wed May 11 14:56:05 2011"
KEYWORD "DEVICE_CLASS"
DEVICE CLASS "IN}PUT"
KEYWOR\overline{D "COINRN}
COLOR REP "XYZ-RGB"
```

KEYWORD "STDEV_R"
KEYWORD "STDEV_G"
NUMBER_OF FIELDS 10
BEGIN_DATA_FORMAT
SAMPLE ID XXYZ X XYZ_Y XYZ_Z RGB_R RGB_G RGB_B STDEV_R STDEV_G STDEV_B
END DATA FORMAT

NUMBER_OF_SETS 30									
BTEIA -DATA									
A01	47.800	50.500	53.200	54.143	28.927	12.079	1.78540	0.97768	0.58424
A02	9.3000	9.6000	27.600	5.8934	4.3038	4.6361	0.41442	0.25112	20.31921
A03	60.700	62.100	11.200	82.904	42.493	6.2955	1.8058	0.93346	0. 39314
A04	4.4000	4.6000	4.9000	4.9699	2.4462	0.8812	0.40720	00.2218	860.20996
A05	10.500	11.100	11.900	12.550	6.6873	2.7487	0.57773	0.31063	30.26201
A0 6	16.800	17.800	19.500	19.744	10.877	4.6704	0.73688	0.39141	10.33760
A07	32.900	34.700	36.800	38.440	20.872	8.7906	1.06720	0.60164	0.42796
A08	65.100	68.900	72.500	79.212	42.634	17.886	1.7165	0.83926	0.62561
A09	81.800	86.600	91.000	99.951	53.978	22.691	1.2836	1.14140	0.73087
A10	47.800	50.500	53.200	51.524	27.821	11.848	3.80742	2.05430	0.93460
B01	36.900	43.100	7.0000	43.110	29.826	4.4348	1.25730	0.77159	0.32577
B02	15.700	26.500	17.400	11.938	16.377	5.7865	0.58789	0.46097	70.34534
B03	29.800	19.500	20.800	53.957	10.096	4.3343	1.24360	0.36050	0.31889
B04	6.2000	5.7000	7.9000	7.3258	3.1358	1.5580	0.45815	0.23025	50.21919
B05	10.100	12.300	6.8000	12.142	8.7110	2.2550	0.59272	0.34982	20.24303
B06	19.900	20.500	6.5000	28.983	14.426	2.7299	0.82059	0.40240	0.25656
B07	11.000	9.9000	6.8000	17.274	6.3054	1.9268	0.67214	0.30438	80.24077
B08	36.200	34.200	25.000	55.704	20.310	7.0637	1.24030	0.50822	0.40522
B09	60.700	67.500	73.700	67.998	42.395	18.423	1.6913	0.96299	0.66107
B10	56.300	56.500	70.300	59.680	29.310	14.531	3.4600	1.74010	0.92116
C0	47.800	50.500	53.200	55.692	29.850	12.460	1.98701	1.02060	0.58139
C	14.500	8.9000	4.3000	21.198	3.4517	0.80590	0.83276	60.2468	800.17613
3	18.600	24.800	52.500	10.854	12.680	10.540	0.58344	0.43548	80.48329
C04	9.6000	7.2000	6.1000	15.313	3.6935	1.2161	0.71258	0.26522	20.21045
C05	18.000	19.800	34.800	16.063	11.760	7.4468	0.71908	0.42333	30.39573
C06	43.000	30.900	5.8000	82.753	18.755	2.4951	1.6515	0.50249	0.27154
C07	57.000	49.600	6.6000	92.519	33.873	4.4067	1.5869	0.67443	0.32242
C08	69.300	68.900	47.900	95.687	44.601	13.562	2.1710	0.95884	0.54820
C09	64.500	69.900	59.900	78.202	45.299	16.095	1.8464	0.96151	0.57902
C10	47.800	50.500	53.200	51.868	28.192	12.142	3.1149	1.69310	0.85667
END_DATA									

Computer Graphics

Colorimetry

- Step 2 : use of the colorimetry profile to adjust a photo shoot
- The same C. profile may be used to correct every picture made with the same light sources and conditions (one has been done with the color chart)
- But the profile is valid for only one light source, one set of shooting conditions, and one camera. It is also not valid for a long time as lights and camera characteristics usually change in time.
- Therefore, it is NOT an exhaustive calibration procedure - which should be more comprehensive.

Terminal: use_profile FILE.DNG

Computer Graphics

Colorimetry

Computer Graphics

Colorimetry

- Results

Raw image under bad lighting conditions

Image corrected using the color chart

In-camera (roughly) white-balanced image

Studio image by the manufacturer (almost certainly using the same kind of procedure)

Computer Graphics

Colorimetry

- Some tools are available on the course's website : http://cg-dev.Itas.ulg.ac.be/inf/icc_profile_qp201.tar.gz
- Installation scripts - works with Debian-like distros.

Terminal: sudo sh ./install.sh

- GNU/Linux shell scripts for the creation/use of color profiles make_profile, use_profile
- Data files related to the color chart used here (Qpcard 201) and configuration files qpcard201.cht, qpcard201.cie, ufrawrc.use_profile, ufrawrc.make_profile
- Test image file (RAW format) TEST.DNG

